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Abstract

This paper considers the problem of universal lossless source coding with
side information at the decoder only. The correlation channel between the
source and the side information is unknown and belongs to a class parametrized
by some unknown parameter vector. A complete coding scheme is proposed
that works well for any distribution in the class. At the encoder, the proposed
scheme encompasses the determination of the coding rate and the design of the
encoding process. Both contributions result from the information-theoretical
compression bounds of universal lossless source coding with side information.
Then a novel decoder is proposed that takes into account the available infor-
mation regarding the class. The proposed scheme avoids the use of a feedback
channel or the transmission of a learning sequence, which both would result in
a rate increase at finite length.

1 Introduction

The problem of lossless source coding with side information at the decoder has been
well investigated when the correlation model between the source X and the side
information (SI) Y is perfectly known. Several works, see, e.g., [13, 19], propose
practical coding schemes for the Slepian-Wolf (SW) problem. Most of them are
based on channel codes [18], and particularly Low Density Parity Check (LDPC)
codes [12]. This approach allows to leverage on many results on LDPC codes for
the code construction and optimization [11, 14] even if there is a need to adapt the
algorithms developed for channel coding to the case of SW coding [3].

Nonetheless, most of these works assume perfect knowledge of the correlation
channel between the source and the side information. This assumption is difficult to
satisfy in practical situations such as video coding or distributed compression in sensor
networks, due to the varying nature of the characteristics of the real signals. A usual
solution to address this problem is to use a feedback channel [1] or to allow interactions
between the encoder and the decoder [20]. In the latter case, the encoder and the
decoder exchange information on the rate needed and on the correlation channel.
These solutions are however difficult to implement in many practical situations such

1



as sensor networks. Furthermore, solutions based on learning sequences [6] induce a
rate increase at finite length.

Alternatively, universal coding schemes supposed to be able to decode the source
whatever the correlation channel may be considered. Performance bounds for the
universal setup are provided in [4]. We address the problem of constructing a practical
universal coding scheme for the SW setup. At the encoder part, the rate has to be
chosen and the coding process has to be designed. At the decoder part, the source
has to be reconstructed despite the lack of knowledge on the correlation. When no
feedback or learning sequence is allowed, several practical solutions based on LDPC
codes and proposed for channel coding may be adapted to the SW problem. When
hard decoding is performed, as suggested by [6] only symbol values are used, at the
price of an important loss in performance. An alternative solution is the min-sum
decoding algorithm proposed in [2, 15] for channel coding, respectively for binary and
non-binary sources. The min-sum algorithm uses soft information for decoding, but
does not require the knowledge of the correlation channel. The min-sum algorithm
may be as efficient as the soft decoding algorithm, provided that a coefficient is chosen
carefully. Unfortunately this choice depends on the unknown correlation channel.

In many applications, it is possible to restrict the correlation channel model to a
given class (e.g., binary symmetric, Gaussian, etc.) due to the nature of the problem.
Consequently in this paper, the universality is modeled by assuming that the correla-
tion channel belongs to a given class and is parametrized by some unknown parameter
vector θ. Hard and min-sum decoding are not able to exploit the knowledge of the
structure of the class. The coding scheme we propose is based on non-binary LDPC
codes. From an analysis of the performance bounds, we explain how to choose the
coding rate and the LDPC coding matrix. Then, we propose a decoding algorithm
that performs joint estimation of the parameter vector and of the source sequence
with an Expectation Maximization (EM) algorithm. Furthermore, the main problem
of the EM algorithm is its sensitivity to initialization. A method to produce a first
raw estimate of the parameters is thus also provided.

The paper is organized as follows. Section 2 introduces the considered universal
model. Section 3 presents an adaptation of the non-binary LDPC decoding algorithm
for the SW problem. Section 4 describes the practical scheme we propose. To finish,
Section 5 evaluates the performance of the considered scheme through simulations.

2 Model and performance

The source X to be compressed and the SI Y available at the decoder only produce
sequences of symbols {Xn}+∞n=1 and {Yn}+∞n=1. X and Y denote the source and SI
discrete alphabets. In this paper, we mainly consider the case where X = Y =
GF(q), the Galois Field of size q. Bold upper-case letters, e.g., XN

1 = {Xn}Nn=1,
denote random vectors, whereas bold lower-case letters, xN1 = {xn}Nn=1, represent
their realizations. Moreover, when it is clear from the context that the distribution
of a random variable Xn does not depend on n, the index n is omitted. Similarly,
XN

1 is in general denoted X.
In the universal setup we consider, the correlation channel is parametrized by an

unknown vector θ. It is assumed fixed for a sequence {(Xn, Yn)}+∞n=1 but it is allowed
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to vary from sequence to sequence. Formally,

Definition 1. (WP-Source). A source (X, Y ) Without Prior (WP-Source) produces a
sequence of independent symbols {(Xn, Yn)}+∞n=1 drawn from a distribution belonging to
a family {P (X, Y |θ) = P (X)P (Y |X,θ)}θ∈Pθ

parametrized by a vector θ. The vector
θ takes its value in a set Pθ that is either discrete or continuous. The source symbols
X and Y take their values in the discrete sets X and Y, respectively. Moreover, the
parameter θ is fixed for the sequence {(Xn, Yn)}+∞n=1.

The WP-source, completely determined by Pθ and {P (X, Y |θ)}θ∈Pθ
, is stationary

but non-ergodic [8, Section 3.5]. No distribution for θ is specified, either because such
a distribution is not known or because θ cannot be modeled as a random variable.

For the WP-Source, the infimum of achievable rates in lossless SW coding is,
from [4], RSW

X|Y = supθ∈Pθ
H(X|Y,θ). This result shows that the encoder (rate and

coding matrix) has to be designed for the worst parameter case. However, since
classical decoding algorithms require the knowledge of the true correlation channel,
i.e., θ, we propose a practical scheme capable of dealing with the lack of knowledge
of the parameter at the decoder.

3 LDPC codes

LDPC codes are binary [7] or non-binary [5] linear error correcting codes. In [12],
they have been adapted to SW coding for binary sources with perfect correlation
channel knowledge. This section generalizes the adaptation of LDPC codes to the
SW non-binary case when θ is known.

The SW coding of a vector x of length N is performed by producing a vector s
of length M < N as s = HTx. The matrix H is sparse, with non-zero coefficients
uniformly distributed in GF(q)\{0}. In the following, ⊕, 	, ⊗, � are the usual
operators in GF(q). In the bipartite graph representing the dependences between the
random variables of X and S, the entries of X are represented by Variable Nodes (VN)
and the entries of S are represented by Check Nodes (CN). The set of CN connected
to a VN n is denoted N (n) and the set of VN connected to a CN m is denoted N (m).
The sparsity of H is determined by the VN degree distribution λ(x) =

∑
i≥2 λix

i−1

and the CN degree distribution ρ(x) =
∑

i≥2 ρix
i−1 with

∑
i≥2 λi = 1 and

∑
i≥2 ρi = 1.

In SW coding, the rate r(λ, ρ) of a code is given by r(λ, ρ) = M
N

=
∑

i≥2 ρi/i∑
i≥2 λi/i

.

The decoder performs a Maximum A Posteriori (MAP) estimation of x from the
received codeword s and the observed side information y via a Message Passing (MP)
algorithm. The messages exchanged in the dependency graph are vectors of length q.
The initial messages for each VN n are denoted m(0)(n, yn), with components

m
(0)
k (n, yn) = log

P (Xn = 0|Yn = yn)

P (Xn = k|Yn = yn)
. (1)

The messages from CN to VN are computed with the help of a particular Fourier
Transform (FT), denoted F(m). Denoting r the unit-root associated to GF(q), the
i-th component of the FT is given by [11] as Fi(m) =

∑q−1
j=0 r

i⊗je−mj/
∑q−1

j=0 e
−mj .
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At iteration `, the message m(`)(m,n, sm) from a CN m to a VN n is

m(`)(m,n, sm) = A[sm]F−1
 ∏
n′∈N (m)\n

F
(
W
[
Hn′m

]
m(`−1)(n′,m, yn′)

) (2)

where s̄m = 	sm � Hn,m, Hn′m = 	Hn′,m � Hn,m and W [a] is a q × q matrix such
that W [a]k,n = δ(a ⊗ n 	 k),∀0 ≤ k, n ≤ q − 1. A[k] is a q × q matrix that maps a

vector message m into a vector message l = A[k]m with lj = mj⊕k −mk. Note that
the matrix A does not appear in the channel coding version of the algorithm and is
specific to SW coding. At a VN n, a message m(`)(n,m, yi) is sent to the CN m and
an a posteriori message m̃(`)(n, yn) is computed. They both satisfy:

m(`)(n,m, yn) =
∑

m′∈N (n)\m

m(`)(m′, n, sm′) + m(0)(n, yn) , (3)

m̃(`)(n, yn) =
∑

m′∈N (n)

m(`)(m′, n, sm′) + m(0)(n, yn) . (4)

From (4), each VN n produces an estimate of xn as x̂
(`)
n = arg maxk m̃

(`)
k (n, yn). The

algorithm ends if s = HT x̂(`) or if l = Lmax, the maximum number of iterations.

4 Practical Coding Scheme

When θ is unknown, the LDPC decoding algorithm cannot be applied directly, since
the initial messages (1) depend on θ. Therefore, we propose to jointly estimate the
source vector x and the parameter vector θ with an EM algorithm. This algorithm
being very sensitive to its initialization, we propose a method to obtain a raw first
estimate of the parameter to initialize the EM algorithm.

4.1 Joint estimation of θ and x

The joint estimation of the source vector x and of the parameter θ from the observed
vectors y and s is performed via the EM algorithm [9]. The correlation model between
X and Y is assumed to be additive, i.e., there exists a random variable Z such
that Y = X ⊕ Z and θ parametrizes the distribution of Z. The Binary Symmetric
correlation Channel (BSC) of transition probability θ = P (Y = 1|X = 0) = P (Y =
0|X = 1) unknown is a special case, where Z is a binary random variable such that

P (Z = 1) = θ. Knowing some estimate θ(`) obtained at iteration `, the EM algorithm
maximizes, with respect to θ,

Q(θ,θ(`)) = EX|y,s,θ(`) [logP (X|y, s,θ)] =
∑

x∈GF(q)n

P (x|y, s,θ(`)) logP (y|x, s,θ) (5)

=
N∑
n=1

q−1∑
k=0

P (Xn = k|yn, s,θ(`)) logP (yn|Xn = k,θ) .

Solving this maximization problem gives the update rules detailed in Lemma 1.
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Lemma 1. Let (X, Y ) be a binary WP-Source. Let the correlation channel be a
Binary Symmetric channel (BSC) with parameter θ = P (Y = 0|X = 1) = P (Y =
1|X = 0), θ ∈ [0, 1]. The update equation for the EM algorithm is [17]

θ(`+1) =
1

N

N∑
n=1

|yn − p(`)n | (6)

where p
(`)
n = P (Xn = 1|yn, s, θ(`)).

Let (X, Y ) be a WP-Source that generates symbols in GF(q). Let the correlation
channel be such that Y = X ⊕ Z, where Z is a random variable in GF(q), and
P (Z = k) = θk. The update equations for the EM algorithm are

∀k ∈ GF(q), θ
(`+1)
k =

∑N
n=1 P

(`)
yn	k,n∑N

n=1

∑q−1
k′=0 P

(`)
yn	k′,n

(7)

where P
(`)
k,n = P (Xn = k|yn, s,θ(`)).

Proof. The binary case is provided by [17]. In the non-binary case, the updated
estimate is obtained by maximizing (5) taking into account the constraints 0 ≤ θk ≤ 1

and
∑q−1

k=0 θk = 1. The P
(`)
k,n = P (Xn = k|yn, s,θ(`)) are obtained from the LDPC

decoder considering that the true parameter is θ(`).

4.2 Initialization of the EM algorithm

We now propose an efficient initialization of the EM algorithm valid for irregular codes
and for sources X, Y taking values in GF(q). This generalizes the method proposed
in [17] for regular and binary codes. The rationale is to derive a Maximum Likelihood
(ML) estimate of θ from a subpart u = HTx⊕HTy of the observed data (HTx and
y).

4.2.1 The BSC with irregular codes

In this case, each binary random variable Um is the sum of random variables of Z.
Although each Zn appears in several sums, we assume that each Um is the sum of i.i.d.

random variables Z
(m)
j . The validity of this assumption depends on the choice of the

matrix H and is not true in general. Although it produces a suboptimal solution, this
choice may lead to a reasonable initialization for the EM algorithm. Furthermore,
the number of terms in the sum for Um depends on the degree of the CN m. One can
use the CN degree distribution ρ(x) as a probability distribution for these degrees, or
decide to take into account the knowledge of the CN degrees. Both cases lead to a
probability model for the Um and enable to obtain an ML estimate for θ, as described
in the two following lemmas.

Lemma 2. Let U be a binary random vector of length M . Each Um is the sum of

Jm identically distributed binary random variables Z
(m)
j , i.e., Um =

∑Jm
j=1 Z

(m)
j , where

the Z
(m)
j are independent ∀j,m. {Jm}Mm=1 are i.i.d. random variables taking their
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values in {2, . . . , dc} with known probability P (J = j) = ρj. Denote θ = P (Z = 1),

α = P (U = 1) and assume that θ and α are unknown. Then their ML estimates θ̂

and α̂ from an observed vector u satisfy α̂ = 1
M

∑M
m=1 um and θ̂ = f−1(α̂), where f

is the invertible function f(θ) = 1
2
− 1

2

∑dc
j=2 ρj(1− 2θ)j, ∀θ ∈ [0, 1

2
].

Proof. The random variables Um are independent (sums of independent variables).

They are identically distributed because the Jm and the Z
(m)
j are identically dis-

tributed. α = P (U = 1) =
∑dc

j=2 ρjP (U = 1|J = j). Then, from [17], P (U =

1|J = j) =
∑j

i=1,i odd

(
j
i

)
θi(1 − θ)j−i and from [7, Section 3.8], P (U = 1|J = j) =

1
2
− 1

2
(1− 2θ)j. Thus α = f(θ). The ML estimate α̂ of α given u is α̂ = 1

M

∑M
m=1 um.

Finally, as f is invertible for θ ∈
[
0, 1

2

]
, then from [10, Theorem 7.2], the ML estimate

of θ is given by θ̂ = f−1(α̂).

Lemma 3. Let U be a binary random vector of length M . Each Um is the sum of

jm identically distributed binary random variables Z
(m)
j , i.e., Um =

∑jm
j=1 Z

(m)
j , where

Z
(m)
j are independent ∀j,m. The values of jm are known and belong to {2, . . . , dc}.

Denote θ = P (Z = 1) and assume that θ is unknown. Then the entries of U are

independent and the ML estimate θ̂ from an observed vector u is the argument of the
maximum of

L(θ) =
dc∑
j=2

N1,j(u) log

(
1

2
− 1

2
(1− 2θ)j

)
+

dc∑
j=2

N0,j(u) log

(
1

2
+

1

2
(1− 2θ)j

)
(8)

where N1,j(u) and N0,j(u) are the number of symbols in u obtained from the sum of
j elements and respectively equal to 1 and 0.

Proof. The random variables Um are independent (sums of independent variables).

Therefore, the likelihood function satisfy L(θ) = logP (u|θ) =
∑M

m=1 logP (um|jm, θ).
Then, as in the proof of Lemma 2, we obtain (8).

The method of Lemma 2 is simpler to implement but does not take into account
the actual matrix H, at the price of a small loss in performance.

4.2.2 The non-binary discrete case

Only the case of a regular code is presented here, but the method can be generalized
to irregular codes (see the previous section). Now, the probability mass function of
Z is given by θ = [θ0 . . . θq−1] with θk = P (Z = k) ∀k ∈ GF(q). Now, each Um is the
sum of symbols of Z, weighted by the coefficients contained in H. A first solution
does not exploit the knowledge of these coefficients, but uses the fact that the non-
zero coefficients of H are distributed uniformly in GF(q)\{0} (Lemma 4). A second
solution takes into account the knowledge of the coefficients (Lemma 5).

Lemma 4. Let U be a length M random vector with entries in GF(q) such that each

Um is the sum of dc i.i.d. products of random variables, i.e., Um =
∑dc

j=1H
(m)
j Z

(m)
j .
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The Z
(m)
j and H

(m)
j are identically distributed random variables, mutually, and indi-

vidually independent ∀j,m. The H
(m)
j are uniformly distributed in GF(q)\{0}. The

Z
(m)
j take their values in GF(q). Denote θk = P (Z = k), αk = P (U = k) and as-

sume that θ = [θ0 . . . θq−1] and α = [α0 . . . αq−1] are unknown. Denote θ̂ and α̂ their

respective ML estimates from an observed vector u, with α̂k = Nk(u)
M

where Nk(u) is
the number of occurrences of k in the vector u. Let

f(θ) =
∑

n0...nq−1

(
dc

n0 . . . nq−1

)(
1

q

)dc
F−1

(
q−1∏
j=0

(F (W [j]θ)))nj

)
(9)

where the sum is on all the possible combinations of integers n0 . . . nq−1 such that

0 ≤ nk ≤ dc and
∑q−1

k=0 nk = dc. Then the random variables of U are independent,

α = f(θ), and if f is invertible, θ̂ = f−1(α̂).

Proof. The random variables Um are independent (sums of independent variables).
Then, αk = P (U = k) =

∑
{hj}dcj=1

P ({hj}dcj=1)P (U = k|{hj}dcj=1) in which the sum

is on all the possible combinations of coefficients {hj}dcj=1. This can be simplified
as αk =

∑
n0...nq−1

P (N0 = n0 . . . Nq−1 = nq−1)P (U = k|n0 . . . nq−1) where nk is the

number of occurrences of k in a combination {hj}dcj=1. One has P (N0 = n0 . . . Nq−1 =

nq−1) =
(

dc
n0...nq−1

) (
1
q

)dc
. Then, the vector denoted

PU|n0...nq−1 = [P (U = 0|n0 . . . nq−1) . . . P (U = q − 1|n0 . . . nq−1)] (10)

can be expressed as PU|n0...nq−1 = F−1
(∏q−1

j=0 (F (W [j]θ)))nj

)
. Therefore,

α = [α0 . . . αq−1] =
∑

n0...nq−1

(
dc

n0 . . . nq−1

)(
1

q

)dc
F−1

(
q−1∏
j=0

(F (W [j]θ)))nj

)
. (11)

The ML estimates α̂k of αk are α̂k = Nk(u)
M

. Finally, if f is invertible, then from [10,

Theorem 7.2] the ML estimate of θ is given by θ̂ = f−1(α̂)

Lemma 5. Let U be a length M random vector with entries in GF(q) such that each

Um is the sum of dc i.i.d. random variables, i.e., Um =
∑dc

j=1 h
(m)
j Z

(m)
j . The Z

(m)
j are

independent ∀j,m, and identically distributed random variables taking their values

in GF(q). The values of the coefficients h
(m)
j are known and belong to GF(q)\{0}.

Denote θk = P (Z = k), αk = P (U = k) and assume that θ = [θ0 . . . θq−1] and
α = [α0 . . . αq−1] are unknown. Then the random variables of U are independent and

the ML estimate θ̂ from an observed vector u is the θ that maximizes

L(θ) =
M∑
m=1

logF−1m

(
dc∏
j=1

F(W [hszm,j]θ)

)
(12)

and satisfies 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1.
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Proof. The random variables Um are independent (sums of independent variables).

The ML estimate θ̂ is the value that maximizes the likelihood function given by

L(θ) = logP (u|θ, {h(m)
j }

dc,M
j=1,m=1) =

M∑
m=1

logP (um|θ, {h(m)
j }

dc
j=1) (13)

under the constraint that 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1. The second equality
comes from the independence assumption. Following the steps of Lemma 4, we show

that (13) becomes L(θ) =
∑M

m=1 logF−1m
(∏dc

j=1F(W [h
(m)
j ]θ)

)
.

5 Simulations

For the binary case, we consider a code λ(x) = 0.4295x3 + 0.2750x4 + 0.0745x10 +
0.1150x11 + 0.0035x12 + 0.0930x16 + 0.0095x17, ρ(x) = 0.2187x7 + 0.7760x8 + 0.0053x9

obtained from a code optimization realized with a differential evolution algorithm [16].
The rate of this code is R = 0.75 bit/symbol and Pθ = [00.18], where 0.18 is the
threshold of the code.

We first focus on the proposed initialization method. The performance of the
estimators introduced in Lemmas 2 and 3 is first evaluated via Monte Carlo (MC)
simulations [9]. More precisely, 50000 vectors U of length M are generated from
the models defined in Lemmas 2 and 3, for θ = 0.1. Then, the two proposed esti-
mation methods are applied to each realization and the Mean Squared Error (MSE)

E
[
(θ − θ̂)2

]
is evaluated as a function of N = M

R
. This gives the two superposed

lower curves of Figure 1, showing that both techniques provide similar performance.
Hence, one can choose the simpler model of Lemma 2 for the initialization of the EM
algorithm.

Then, 10000 vectors Z of length N are generated with respect to θ. A matrix H of
the considered code is applied to each vector. The two proposed estimation methods
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are applied to each realization to evaluate, as before, the MSE. This gives the two
superposed upper curves of Figure 1. We observe a loss of a factor 10 in MSE due to
the fact that the entries of U are not independent.

Second, we are interested in the EM algorithm. For a length N = 10000, we
compare the Bit Error Rate (BER) of four setups setups. The first setup is the
genie-aided setup where the true parameter θ is given to the decoder. The second
setup corresponds to the EM algorithm initialized with the method of Lemma 2. The
third setup corresponds to the EM algorithm initiliazed with a random θ. In the
fourth setup, the LDPC decoder is initialized with the worst case parameter θ = 0.18
(without EM). The results are presented in Figure 2. The number of iterations for the
LDPC decoder is 50. The BER is plotted with respect to the number of iterations
of the EM algorithm, for θ = 0.13 and θ = 0.14. We see that the EM algorithm
initialized properly converges faster than the one initialized at random. Note also the
LDPC decoder initialized with the worst case parameter does not perform well.

For the non-binary case, only preliminary results were obtained. The functions
defined in Lemmas 4 and 5 are more difficult to inverse or to maximize. Consequently,
the numerical methods used to perform such operations give initial parameter rela-
tively far from the good parameter (relative error around 10−1). Then, the number
of iterations required for the EM algorithm to converge is more important than in
the binary case (about 5 or 6). The complete results will be in the final version of
the paper.

6 Conclusion

This paper presents a universal Slepian-Wolf coding scheme based on LDPC codes.
The proposed method allows to decode whatever the correlation channel in a given
class by performing joint estimation of the source vector and of the parameter of
the correlation channel. A method to initialize the EM algorithm realizing the joint
estimation is also introduced.

Future works will be devoted to the development of density evolution methods to
evaluate the threshold of the proposed scheme From such tools, one would be able
to optimize the coding matrix both for the decoding of the source vector and for the
estimation of the parameters.
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