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ABSTRACT

This paper considers the problem of lossy source coding with side in-
formation at the decoder only, for Gaussian sources, when the joint
statistics of the sources are partly unknown. We propose a practi-
cal universal coding scheme based on scalar quantization and non-
binary LDPC codes, which avoids the binarization of the quantized
coefficients. We first explain how to choose the rate and to construct
the LDPC coding matrix. Then, a decoding algorithm that jointly
estimates the source sequence and the joint statistics of the sources
is proposed. The proposed coding scheme suffers no loss compared
to the practical coding scheme with same rate but known variance.

Index Terms— Source coding with side information, Rate-
distortion, Low Density Parity Check codes, Expectation Maximiza-
tion algorithm

1. INTRODUCTION

The problem of lossy source coding with side information at the
decoder, also called the Wyner-Ziv problem [1], has been well in-
vestigated when the probability distribution between the source X
and the side information Y is perfectly known. Practical coding
schemes were proposed for this problem when the correlation chan-
nel between X and Y is assumed Gaussian [2], Gauss-Markov [3],
or Bernoulli-Gaussian [4] with known parameters. The latter case
accounts for the possible time variations of the variance of the cor-
relation channel between the source and the side information.

Nevertheless, in many practical situations, such as distributed
source coding in a network of sensors, the parameters of the proba-
bility distribution are in general difficult to obtain. In [5], it is shown
that the performance of source coding with side information remains
the same if the probability distribution P (X) is unknown. Instead,
we consider an uncertain correlation channel P (Y |X), which is usu-
ally more difficult to characterize than the marginal P (X). This has
been investigated in [6], under the assumption that the correlation
channel is given to the decoder but not perfectly known at the en-
coder. We further generalize this problem, and assume that the cor-
relation channel is partly undisclosed at both the encoder and the
decoder.

Usually this problem is addressed using a feedback channel [7].
This requires communication between the decoder and the encoder,
leading to undesired delays. Alternatively, solutions based on learn-
ing sequences [8] induce a rate increase for finite-length source se-
quences. To avoid increasing either the delay or the rate, we propose
a universal coding scheme that can handle correlated sources with
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unknown correlation channel parameters. As an example, we con-
sider a Gaussian correlation channel with variance only known to
belong to some interval. The encoder has to choose the rate and to
design the coding process. The decoder has to reconstruct the source
despite the lack of knowledge on the correlation.

The proposed coding scheme consists of a scalar quantizer that
maps the real-valued source symbols into discrete symbols in GF(q),
the Galois Field of size q. A Slepian-Wolf (SW) chain then transmits
losslessly the quantized version of the source and a Minimum Mean
Square Error (MMSE) estimator reconstructs the source from the
side information and the quantization indexes. Usually, SW chain
is based on Low Density Parity Check (LDPC) coding [9] of the
quantized symbols mapped to bit planes. To prevent a performance
loss, it is necessary for the LDPC decoder to account for the depen-
dence between bit planes [10]. In order to avoid the binarization step
and the loss in performance it incurs, LDPC codes in GF(q) [11] are
considered here.

For the decoding, the classical min-sum LDPC algorithm does
not perform well without the knowledge of the variance. Thus, we
propose to jointly estimate the variance of the correlation channel
and the source sequence, with the help of an Expectation Maximiza-
tion (EM) algorithm based on the non-binary LDPC decoder. As
one of the usual problems of the EM algorithm is its initialization,
we also propose a method to produce a first raw estimate of the vari-
ance.

The paper is organized as follows. Section 2 introduces the no-
tations and the considered signal model. Section 3 describes the
proposed coding scheme. Section 4 shows simulation results.

2. SIGNAL MODEL
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Fig. 1. The Wyner-Ziv coding scheme

The source X to encode and the SI Y , available at the decoder
only, see Figure 1, produce sequences of symbols {Xn}+∞n=1 and
{Yn}+∞n=1. Bold upper-case letters, e.g., XN

1 = {Xn}Nn=1, denote
random vectors, whereas bold lower-case letters, xN1 = {xn}Nn=1,
represent their realizations. Moreover, when it is clear from the con-
text that the distribution of a random variable Xn does not depend
on n, the index n is omitted. Similarly, XN

1 is in general denoted X.



In our setup, X is zero-mean Gaussian with variance σ2
x, i.e.,

X ∼ N (0, σ2
x). Assume that there exists a random variable Z in-

dependent of X such that Y = X + Z, Z ∼ N (0, σ2) and σ2 is
unknown but fixed for the sequence {(Xn, Yn)}+∞n=1. Denote Iσ2

the set of possible σ2 and assume that Iσ2 is an interval. Note that
no prior distribution on σ2 is assumed, either because this prior dis-
tribution is not known or because σ2 is not modeled as a random
variable. It corresponds to the WP-Model defined in [8]. Consider
the quadratic distortion measure d(X, X̂) = E

[
|X − X̂|2

]
.

3. UNIVERSAL WYNER-ZIV CODING SCHEME
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Fig. 2. Proposed universal Wyner-Ziv coding scheme

This section describes the proposed coding scheme represented
in Figure 2. To encode a sequence x of length N , each symbol xn
is first quantized with a Uniform Scalar Quantizer (USQ). When the
statistics of the source are known, [13] shows that USQ followed by
SW encoding suffers only a 1.53 dB loss in the high rate regime.
The USQ has q = 2l quantization levels. Denote ∆, qk, and bk,
bk+1 respectively the size of the quantization cells, the level, and the
boundaries of the k-th quantization level. The quantization opera-
tion gives a sequence xq of real symbols with values given by the
quantization levels. We assume that there exists a random variable
Bq ∼ N (0,∆2/12) such that X = Xq + Bq. This defines a set of
possible distributionsN (0,∆2/12+σ2) for the correlation channel
between Xq and Y . The quantized symbols are then mapped one to
one in GF(q), thus giving the sequence xq .

Then, xq is transmitted losslessly to the decoder, with the help of
a SW chain realized with an LDPC code in GF(q). In universal SW
coding, the infimum of achievable rates for the correlation model
between Xq and Y is given by [14]

RSWXq|Y = sup
σ2∈I

σ2

H(Xq|Y, σ2) . (1)

It follows that the rate of the code and the LDPC coding matrix H ,
have to be chosen for the worst possible σ2 in Iσ2 . This gives a
codeword u of length M < N with symbols in GF(q). At the
decoder, one cannot efficiently use a classical min-sum LDPC de-
coder [15] to reconstruct xq from u and y, since such a decoder
requires the knowledge of the true parameter σ2. Therefore, we pro-
pose to jointly estimate the source sequence xq and the parameter
σ2 from the codeword u and the side information sequence y with
the use of an EM algorithm based on the classical LDPC decoder,
giving x̂q and σ̂2. The min-sum LDPC decoder in GF(q) is pre-
sented in Section 3.1 for known σ2. The EM algorithm is presented
in Section 3.2 as well as the proposed initialization method.

Then, each symbol in GF(q) of x̂q is mapped one to one into
its real version, giving x̂q. Scalar dequantization is performed via
MMSE estimation of x and uses x̂q, σ̂2 and y. For a known xq

and σ2, as the sources are Gaussian, the MMSE estimator is linear

and x̂n = αyn + βxq,n, where α =
(

σ2

∆2/12
+

σ2
x+σ2

σ2
x

)−1

and

β = σ2

∆2/12

(
σ2

∆2/12
+

σ2
x+σ2

σ2
x

)−1

.

3.1. Non-binary LDPC codes

LDPC codes are binary [16] or non-binary [11] linear error-
correcting codes. In [9], they have been adapted to SW coding
for binary sources with known correlation channel. This section
presents an extension to the SW non-binary case when σ2 is known.
Most of the material presented in Section 3.1 was already given
in [17] but we recall it here for the sake of clarity.

The SW coding of a vector x of length N is performed by pro-
ducing a vector u of length M < N as u = HTx. The ma-
trix H is sparse, with non-zero coefficients uniformly distributed in
GF(q)\{0}. In the following, ⊕, 	, ⊗, � are the usual operators in
GF(q). In the bipartite graph representing the dependencies between
the random variables of X and U, the entries of X are represented by
Variable Nodes (VN) and the entries of U are represented by Check
Nodes (CN). The set of CN connected to a VN n is denoted N (n)
and the set of VN connected to a CN m is denoted N (m). The
sparsity of H is determined by the VN degree distribution λ(x) =∑
i≥2 λix

i−1 and the CN degree distribution ρ(x) =
∑
i≥2 ρix

i−1

with
∑
i≥2 λi = 1 and

∑
i≥2 ρi = 1. In SW coding, the rate r(λ, ρ)

of a code is given by r(λ, ρ) = M
N

=
∑
i≥2 ρi/i∑
i≥2 λi/i

.

The decoder performs a Maximum A Posteriori (MAP) estima-
tion of x from the received codeword u and the observed side infor-
mation y via a Message Passing (MP) algorithm. The messages ex-
changed in the dependency graph are vectors of length q. The initial
messages for each VN n are denoted m(0)(n, yn), with components

m
(0)
k (n, yn) = log

P (Xn = 0|Yn = yn)

P (Xn = k|Yn = yn)
. (2)

With our model when σ2 is known, this gives

m
(0)
k (n, yn) = log

P (Xq = 0)

P (Xq = k)
+

(qk − q0)(qk − q0 − 2yn)

2σ2
(3)

where P (Xq = k) can be calculated as

P (Xq = k) =
1

2

(
erf
(
bk+1

2σ2
x

)
− erf

(
bk

2σ2
x

))
. (4)

The messages from CN to VN are computed with the help of a par-
ticular Fourier Transform (FT), denoted F(m). Denoting r the unit-
root associated to GF(q), the i-th component of the FT is Fi(m) =∑q−1
j=0 r

i⊗je−mj/
∑q−1
j=0 e

−mj , see [18].

At iteration `, the message m(`)(m,n, um) from a CN m to a
VN n is

m(`)(m,n, um) = A[um]F−1
(
M(`)(m,n)

)
(5)

with

M(`)(m,n) =
∏

n′∈N (m)\n

F
(
W
[
Hn′m

]
m(`−1)(n′,m, yn′)

)
(6)

where ūm = 	um�Hn,m,Hn′m = 	Hn′,m�Hn,m andW [a] is
a q×q matrix such thatW [a]k,n = δ(a⊗n	k),∀0 ≤ k, n ≤ q−1.
A[k] is a q × q matrix that maps a vector message m into a vector
message ` = A[k]m with `j = mj⊕k−mk. Note that the matrixA
does not appear in the channel coding version of the algorithm and is
specific to SW coding. At a VN n, a message m(`)(n,m, yi) is sent
to the CN m and an a posteriori message m̃(`)(n, yn) is computed.



They both satisfy

m(`)(n,m, yn) =
∑

m′∈N (n)\m

m(`)(m′, n, um′) + m(0)(n, yn) ,

m̃(`)(n, yn) =
∑

m′∈N (n)

m(`)(m′, n, um′) + m(0)(n, yn) .

(7)

From (7), each VN n produces an estimate of xn as x̂
(`)
n =

arg maxk m̃
(`)
k (n, yn). The algorithm ends if u = HT x̂(`) or

if l = Lmax, the maximum number of iterations.

3.2. EM algorithm

In our problem, the described LDPC decoder cannot be applied di-
rectly, because the initial messages (2) depend on the unknown σ2.
Consequently, we propose to jointly estimate Xq and σ2 with an EM
algorithm based on the described LDPC decoder. However, the main
problem of the EM algorithm is its sensitivity to initialization. We
thus provide a method to produce a first raw estimate of σ2 in order
to initialize the EM algorithm.

3.2.1. Initialization

The main idea of the initialization method is to produce a Maximum
Likelihood (ML) estimate of σ2 from u and y before using the
LDPC decoder. Because of the encoding operation, each Um can
be seen as a sum of random variables Um =

∑deg(m)
j=1 h

(m)
j X

(m)
j ,

where deg(m) is the degree of the Check Node m and h
(m)
j are

the coefficients contained in H . Two assumptions are made in
order to get an approximate version of the likelihood function
L(σ2) = logP (u,y|σ2). First, we assume that the random
variables X(m)

j are independent ∀j,m. Second, we assume that

P (Um|Y) = P (Um|{Y (m)
j }deg(m)

j=1 ), i.e., each Um depends only

on the Y (m)
j associated to the X(m)

j composing the sum. Although
these two assumptions are false in general, they may lead to a rea-
sonable first raw estimate for σ2. Indeed, with these assumptions,
one just neglects part of the available information, i.e., the depen-
dencies between the Um’s and the dependencies between Um and
the remaining symbols of Y. Using these assumptions, L(σ2) can
be expressed as

L(σ2) = logP (u|y, σ2) + logP (y|σ2) (8)

=

M∑
m=1

logP (um|{y(m)
j }deg(m)

j=1 ) +

N∑
n=1

logP (yn|σ2) .

Moreover, one can show that

P (um|{y(m)
j }deg(m)

j=1 ) = F−1
um

( deg(m)∏
j=1

F(W [h
(m)
j ]pj)

)
(9)

with pj =
(
P (X

(m)
j = 0|y(m)

j ) . . . P (X
(m)
j = q − 1|y(m)

j )
)

and

F−1
um(.) is the um-th component of the inverse FT. W [h

(m)
j ] en-

ables to evaluate the P (h
(m)
j X

(m)
j = k|y(m)

j ), k = 0 . . . q − 1.
(9) follows from the fact that Um is the sum of independent and
identically distributed random variables of conditional distributions
P (h

(m)
j X

(m)
j = k|y(m)

j ). Its probability is a convolution product,

and can be efficiently evaluated in the Fourier domain from pj . Fi-
nally, the initial estimate σ̂2(0) is given by

σ̂2(0) = arg max
σ2∈I

σ2

L(σ2) . (10)

3.2.2. Iterations of the EM algorithm

Then, knowing some estimate σ̂2(`) obtained at iteration `, the EM
algorithm maximizes

Q(σ2, σ̂2(`)) =EX|y,u,σ̂2(`)

[
logP (X|y,u, σ2)

]
=

∑
x∈GF(q)n

P (x|y,u, σ̂2(`)) logP (y|x,u, σ2)

=

N∑
n=1

q−1∑
k=0

P (Xn = k|yn,u, σ̂2(`))

logP (yn|Xn = k, σ2) (11)

with respect to σ2. Denote P (`)
k,n = P (Xq,n = k|yn,u, σ̂2(`)).

These probabilities are the output of the LDPC decoder assuming
that the true parameter is σ̂2(`). From (11) we show that the update
equation is given by

σ̂2,(`+1) =
1

N

N∑
n=1

q−1∑
k=0

P
(`)
k,n(yn − qk)2 (12)

if σ̂2,(`+1) ∈ Iσ2 , or by one of the bounds of Iσ2 if σ̂2,(`+1) /∈ Iσ2 .
Moreover, at each iteration, an estimate of x(`)

q can be obtained from

x̂(`)
n = arg max

k∈GF(q)
P

(`)
k,n . (13)

4. NUMERICAL RESULTS

For the simulations, σ2
x = 1, N = 1000, σ2 = 0.5. The encoder

and the decoder only know that Iσ2 = [σ2, σ2] = [0, 0.55]. The
number of experiments is choosen as K = 100.

We consider uniform scalar quantization over the interval
[−3σx, 3σx] and q = 4, 8, 16 and 32. Therefore, the quantization
step is ∆ = 6σx/q. If a source symbol is outside [−3σx, 3σx], its
quantized version corresponds to the associated extreme quantiza-
tion level. The quantizer induces some distortion D, which depends
on q and on the true but unknown σ2. The simulations have been
carried out under a rate constraint achieved by the LDPC encoder.
More precisely, for an LDPC over GF(q) with coding rate r(λ, ρ),
the overall coding rate (in bits/source symbol) is R = r log2(q).
In this section, we chose LDPC codes with dv = 2 (this leads
to good non binary codes) and tested the pairs (q, r) = (4, 2/3),
(8, 2/3), (16, 3/4), (32, 4/5). These pairs have been determined
to insure successful decoding in the worst case σ2 = σ2. Each
(q, r) is equivalent to a rate constraint, which induces a distortion
D. The resulting set of points (R,D) correspond to the operational
rate-distortion curve for uniform scalar quantization with LDPC
codes.

Six setups are compared and the corresponding curves are plot-
ted in Figure 3.

In the setups 1,2 and 3 we evaluate the rate-distortion perfor-
mance of ideal Wyner-Ziv and SW schemes. Setup 1 (Ideal WZ)
gives the rate-distortion bound R(D) = 1

2
log2

σ2

D
for the true pa-

rameter σ2, corresponding to ideal Wyner-Ziv coding when σ2 is
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Fig. 3. Comparison of the rate-distortion performance of six
schemes

known. Setup 2 (Ideal SW, GF(q)) assumes that σ2 is known and
that the coding scheme is composed by USQ + Ideal SW + MMSE
estimator. The ideal SW rate corresponds to H(Xq|Y ), evaluated
numerically, for the true σ2, in order to evaluate the loss due to the

USQ. The distortion is calculated as D =
∑NK
n=1

(x
(k)
n −x̂

(k)
n )2

KN
. One

can observe a loss of about 1.53 dB, as expected from [13] in the
high rate regime. Setup 3 (Ideal SW, GF(q)) considers again USQ +
ideal SW + MMSE estimator, except that the rate of the ideal SW is
evaluated for binary codes when the quantized symbols are mapped
in bit planes and the dependence between bit planes is not taken into
account. An important loss is observed despite the ideal SW chain.

In the setups 4, 5 and 6, we evaluate the rate-distortion per-
formance of coding schemes based on LDPC codes. In Setup 4
(genie-aided), the complete chain is implemented : USQ + non-
binary LDPC coder and decoder + MMSE estimator, with 20 iter-
ations of the LDPC decoder. The rate is dimensioned for σ2 but
the value of σ2 is assumed perfectly known at the decoder. A loss
of about 2.5 dB is observed that is both due to the worst-case cod-
ing and to the fact that the non-binary LDPC codes we use are not
optimized for this problem. Setup 5 (EM), is the proposed coding
scheme with σ2 unknown. The EM algorithm is initialized with the
proposed method and has 4 iterations. If suffers only a little loss in
the high-rate regime compared to Setup 4. In setup 6, the EM al-
gorithm is initialized at random on Iσ2 and a loss of approximately
2 dB is observed.

5. CONCLUSION

In this paper, we propose a universal coding scheme for the Wyner-
Ziv coding of Gaussian sources with unknown variance of the cor-
relation channel. Simulation results show that the proposed coding
scheme suffers no loss compared to the case where the rate is the
same and the variance is known. Otherwise, we observe that the loss
with respect to the Wyner-Ziv bound is mainly due to the uniform
scalar quantizer and to the choice of the LDPC codes. Consequently,
future works will be dedicated to the construction of a nested quan-
tizer and to the design of good non-binary LDPC codes for this
problem. Furthermore, the proposed scheme could be generalized

to other signal models, such as Laplacian, or Bernoulli-Gaussian.
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