
Practical LDPC Encoders Robust to Hardware
Errors

Elsa DUPRAZ1,4, Valentin Savin2, Satish Kumar Grandhi3, Emanuel Popovici3, and David DECLERCQ4

1 Telecom Bretagne; UMR CNRS 6285 Lab-STICC, Brest, France
2 CEA-LETI, Minatec Campus, Grenoble, France

3 Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
4 ETIS - ENSEA / Univ. Cergy-Pontoise / CNRS UMR-8051, Cergy-Pontoise, France

Abstract—LDPC decoders on faulty hardware have received
increasing attention over the last few years, mainly motivated
by reliability issues in emerging nanotechnologies. As a main
result, it was shown that LDPC decoders are naturally robust
to hardware faults. LDPC encoders on faulty hardware have
received less attention, and they are expected to be less robust
to hardware faults. In this work, we propose an LDPC encoding
solution that is robust to faulty hardware. Our encoding solution
is composed of two steps. First, an Augmented Encoding method
is proposed, which consists in computing an augmented codeword
that contains both the codeword to be transmitted on the channel
and extra parity bits. The augmented codeword is computed from
a noisy encoding circuit, and then corrected by a noisy Gallager-B
decoder before channel transmission. The augmented codeword
is obtained from a rate-compatible construction that guarantees
good decoding performance both for the augmented codeword
and for the codeword to be transmitted on the channel. In order
to further improve the robustness of our encoding solution, we
propose a second step, consisting of a circuit-level optimization.
We propose to identify the critical gates that are responsible for
encoding failures, and to duplicate them in order to reduce their
influence on encoding outputs. Based on Monte-Carlo simulation,
we show that the proposed solution significantly improves the
encoding robustness to hardware faults.

I. INTRODUCTION

Over the past few years, reliability has become a major issue
in the design of electronic devices. The expected increase in
density integration coupled with significant chip size reduction
will make the next generations of electronic devices much
more sensitive to noise [1]. As a consequence, in the future
systems of communication and storage, errors may not only
come from the transmission channels, but also from the faulty
hardware. In this context, there is a need to evaluate the
robustness of Low Density Parity Check (LDPC) encoders and
decoders running on faulty hardware.

Several recent works were devoted to the analysis and
design of LDPC decoders robust to hardware faults. Hard de-
coders were analyzed in [2] (Gallager A) and [3] (Gallager B)
by using noisy density evolution [2], while soft decoders were
considered in [2] (Belief Propagation), and [4] (quantized Min-
Sum). Also, the design of Finite Alphabet Iterative Decoders
(FAIDs) robuts to hardware faults was proposed in [5].

For the encoding part, the level of hardware noise that can
be tolerated by the LDPC encoder has been evaluated from an
information theoretic perspective in [6]. However, the results

of [6] do not indicate how to construct an encoder robust to
hardware faults. From a practical point of view, [7] shows
that most of the standard encoding solutions (systematic,
lower triangular, encoding for Zig-Zag and QC-codes, etc.)
completely fail under faulty hardware settings.

A robust LDPC encoding solution was proposed in [8],
[9] that consists of computing extra parity bits in addition to
the original codeword in order to protect the encoder. Several
LDPC decoders are then embedded in the encoder, in order
to correct gradually the faults introduced by the hardware.
The authors of [8], [9] provide a theoretical analysis of the
robustness of the proposed solution and, from this analysis,
determine the hardware noise conditions that permit robust
encoding. However, the proposed solution is computationally
expensive, due to multiple decoding stages. Further, [8], [9]
do not propose any code construction for the extra parity bits,
nor practical implementation of the solution.

The objective of this paper is to propose a practical LDPC
encoder robust to faulty hardware. The design of our robust
encoder is composed of two parts.

We first introduce the Augmented Encoding approach that
consists of computing an augmented codeword that contains
both the original codeword and additional parity bits. Be-
fore channel transmission, the augmented codeword is passed
through one single LDPC decoder in order to eliminate the
hardware faults. Here, we propose to compute the extra parity
bits from a split-extended construction [10], which belongs to
the family of rate-compatible LDPC codes. The split-extended
construction ensures good decoding performance both for (i)
the augmented codeword, that needs to be decoded at the
transmitter side in order to correct the hardware faults, and
(ii) the original codeword, that needs to be decoded at the
receiver side in order to correct the transmission errors.

The second part of our robust encoding solution consists of
a design procedure of the circuit implementing the Augmented
Encoder. We identify the critical gates of the circuit, in the
sense that only one single error at the output of such gates
may propagate to a large number of outputs of the circuit. We
then propose an algorithm to duplicate the critical gates, so
as to limit their error propagation impact. Based on Monte-
Carlo simulations, we show that gate duplication combined
with Augmented Encoding greatly improves the robustness of



the encoder to hardware faults.
The outline of the paper is as follows. Section II introduces

our notation for LDPC codes and the error model we con-
sider to represent hardware faults on the encoder. Section III
presents the Augmented Encoding approach. Section IV in-
troduces the gate duplication procedure. Section V shows the
Monte Carlo simulation results.

II. LDPC CODES AND ERROR MODELS

In this section, we first introduce our notation for LDPC
codes and present the LDPC encoding problem. We then de-
scribe the gate error model that represents the faulty hardware
effect on the encoder.

A. LDPC Codes

Denote by H a binary parity check matrix of size (m×n).
An LDPC code is defined as the null-space of the parity check
matrix H . A binary vector x of length n is a codeword if and
only if it verifies

HxT = 0. (1)

With LDPC codes, the parity check matrix H is sparse and
designed such as to ensure good error correction performance
under iterative message passing decoding, see [11]. Once H
is fixed, the corresponding encoder has to be constructed.

B. LDPC Encoders

Denote by u the information sequence of length k. For the
sake of simplicity, we shall assume that H is full rank and
therefore k = n −m. The encoding operation is given by a
function E : {0, 1}k → {0, 1}n such that

x = E(u). (2)

The encoding function E has to transform the information
sequence u into a codeword x that satisfies (1). In order to
perform the encoding, one can construct a generator matrix G
of size (k×n) that verifies HGT = 0. The generator matrix G
can be obtained from H by Gaussian elimination, as described
in [12]. The encoding operation is then given by

x = uG. (3)

As was shown in [12], the matrix G is not sparse in general,
and the complexity of the encoding operation (3) scales as
O(n2).

We denote by CE the Boolean combinational circuit im-
plementing the function E in (2). The circuit CE consists
of Boolean combinational elements connected by wires. The
circuit CE can be seen as a directed acyclic graph with k source
nodes corresponding to primary inputs {u1, · · · , uk}, n sink
nodes corresponding to primary outputs {x1, · · · , xn}, and a
collection of L internal nodes corresponding to logic gates
C = {c1, ..., cL}. The combinational circuit is divided into
a number of processing levels. Processing level-0 consists of
source nodes (primary inputs), level-1 is the set of nodes with
all predecessors in level-0, and recursively, level-t is the set
of nodes with all predecessors in any level between 0 and
(t− 1). We denote by P` the processing level of gate c`. We

also denote by I` the list of predecessors of gate c`, and by N`

the number of elements of I`. We consider that the primary
outputs x1, · · · , xn of the circuit are taken to be the outputs
of n particular gates {r1, ..., rn} ⊂ C, referred to as the output
gates.

In order to obtain a Boolean circuit description of the
encoding operation (2), we consider the encoding from the
generator matrix (3) and we apply a logic synthesis tool to
the encoding function E given by the generator matrix G. The
logic synthesis tool outputs a Boolean combinational circuit
implementing the function E and performs gate factorization
on the circuit in order to reduce its complexity1.

Note that several particular code constructions, such as
Zig-Zag [13] or Quasy-cyclic [14] have specific encoding
solutions. In this paper, we will not consider these specific
code constructions and we will focus on the general solution
that applies to any parity check matrix H . Before discussing
the robustness to hardware faults of the previously described
encoding solutions, we first present the error model we con-
sider to represent the faulty hardware effect on the encoder.

C. Gate Error Model

Since the Boolean circuit description CE implements a linear
function, it can be synthesized from XOR gates only. In
order to have a fair complexity comparison between different
encoding solutions, we will further assume that the Boolean
circuit CE is synthesized using 2-input XOR-gates only. Con-
sequently, we assume that hardware faults are introduced at the
2-input XOR gate level. Denote by pxor the error probability
of a 2-inputs XOR gate. The faulty 2-inputs XOR operator
⊕̃ is defined as

a ⊕̃ b =

{
a⊕ b with prob. 1− pxor,
1⊕ (a⊕ b) with prob. pxor,

(4)

where a and b are binary digits and a ⊕ b is the (perfect)
XOR sum of a and b. The error model described in (4) is
memoryless and data-independent. It is considered here as a
first step of the analysis, and more accurate models will be
considered in future works. At the end, the output vector of
the noisy Boolean circuit CE is denoted x̃. Note that due to
hardware faults, x̃ is not necessarily a codeword.

Under the gate error model (4), it was shown in [7] that
almost all the existing encoding solutions [12]–[14] com-
pletely fail under hardware faults. For the encoding from the
generator matrix (3) the high number of gates involved in the
computation implies a high encoding error probability. As an
example, a gate error probability pxor = 10−3 with a (3, 6)-
code gives encoding error probabilities Pe = 0.15 for the
encoding from the generator matrix. The encoding error prob-
ability Pe is even higher than the optimistic code ensemble
threshold for the (3, 6)-code [11], making the channel error
correction impossible.

1Here, the logic synthesis tool we use is Synopsys Design Compiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DCGraphical/
Documents/dc graphical ds.pdf.



Encoder

noisynoisy

Fig. 1. Augmented Encoding

In this paper, we propose two methods in order to signif-
icantly reduce the encoding error probability prior to trans-
mission over the channel. We first introduce the Augmented
Encoding approach which consists of computing extra parity
bits in order to protect the encoding operation. We then pro-
pose the gate duplication method that consists of duplicating
the critical gates of the Augmented Encoding circuit in order
to reduce the error propagation effect.

III. AUGMENTED ENCODING APPROACH

This section introduces the Augmented Encoding approach,
that consists of computing an augmented codeword that con-
tains both the original codeword to be transmitted on the
channel and extra parity bits to protect the encoder from
hardware faults. Before channel transmission, the augmented
codeword is passed through an LDPC decoder in order to
eliminate the hardware faults from x. The original codeword
x is then transmitted on the channel. The extra parity bits
are computed from a Split-Extended construction, as we also
describe.

A. The Augmented Encoding Approach

The Augmented Encoder is depicted in Figure 1. The
Augmented Encoding approach consists of computing an
augmented codeword xa = [x,pa] of length n + na that
is composed of the original codeword x and of na extra
parity bits pa. Denote by Ha the parity check matrix of size
(m+ na)× (n+ na) of the augmented code. The augmented
codeword xa then satisfies

Hax
T
a = 0. (5)

The augmented codeword is computed from the information
sequence u as

xa = Ea(u) (6)

where the function Ea : {0, 1}k → {0, 1}n+na represents the
encoding operation. We denote by x̃a the noisy version of the
augmented codeword, which is the output of the (noisy) circuit
CEa implementing the Augmented Encoding operation.

Before transmission over the channel, the noisy augmented
codeword x̃a is passed through an LDPC decoder D. The
LDPC decoder has to correct the errors that were introduced by
the hardware during the encoding operation. Here, the LDPC
decoder will be a Gallager B decoder. As the Gallager B
decoder runs on the same hardware as the encoder, it will be
assumed noisy as well. The Gallager B decoder works with
binary messages and is constructed from XOR and majority
logic gates. The XOR gates of the Gallager B decoder can be

Fig. 2. Split-Extension examples

decomposed into 2-input XOR gates which are assumed to be
noisy according to the error model described in Section II-C.
The majority logic gates can be decomposed into 2-input
NAND and OR gates which are also assumed to follow the
error model of Section II-C (defined according to NAND and
OR gates, but with the same gate error probability value pxor).

The LDPC decoder used at the transmitter side has to correct
the hardware-induced errors on the augmented codeword x̃a,
but only the original codeword x is transmitted through the
channel. It is worth noting that as long as the encoding
error probability on the transmitted codeword x is negligible
with respect to the channel error probability (e.g. orders of
magnitude below) the proposed encoding solution can be
considered as being robust to hardware noise.

Both the LDPC code that produces x and the one that
produces xa have to lead to good decoding performance,
with increased correction capabilities for the augmented code.
In order to satisfy these two requirements, we consider the
Split-Extended construction initially introduced in [10] in the
context of coded cooperation.

B. Split-Extended Construction

We now describe the Split-Extend construction that will
be used to generate the extra parity bits pa. The original
codeword x satisfies all the parity-check equations defined by
the rows of the parity check matrix H of the original LDPC
code. The extra parity bits pa can be computed by splitting
the parity check equations of H .

Figure 2 provides two examples of the split of a parity check
equation of H . On the middle part of Figure 2, the parity check
equation

x1 + x2 + x3 + x4 + x5 + x6 = 0 (7)

corresponds to a row of H . On the left part of Figure 2, a new
parity bit pa1

is generated by splitting the original parity check
into two sub-checks as follows. The set of bits connected to
the check-node is partitioned into two subsets, and the parity
bit pa1

is generated as the sum of the bits of one of the
two subsets. The splitting then gives two sub parity check
equations

x1 + x2 + x3 + pa1 = 0, pa1 + x4 + x5 + x6 = 0. (8)

On the right part of Figure 2, applying the same principle,
two new parity bits pa1

and pa2
are generated by splitting the

original parity-check into three parity-checks. The set of bits
connected to the check node is partitioned into three subsets,
and pa1 is generated as the sum of the bits in the first subset.



Fig. 3. Base matrix of a QC-LDPC code with dv = 3 and r = 1/2 (top),
and corresponding split-extended base matrix (bottom)

Subsequently, pa2 can be generated either as the sum of pa1

and the bits in the second subset, or as the sum of the bits in
the third subset. The matrix defined by these new parity check
equations is denoted by Ha.

With this construction, the augmented codeword xa verifies
Hax

T
a = 0 (5) while the original codeword x still satisfies

HxT = 0 (1). An advantage of this construction is that it can
be applied to any preexisting parity check matrix H , in order
to generate a number of extra parity bits that allows increasing
the error correction capacity of the code. The total number na

of extra parity bits pa depends on the number of rows of H
and on the number of extra bits generated for each row of H .
The number of extra bits generated for each row may vary
from one row to another. More details on the split-extended
construction and on how to design the number of extra bits
generated for each row of H , depending on noise conditions,
can be found in [10].

At the end, the encoding function Ea can be obtained by
computing the generator matrix Ga corresponding to the split-
extended parity check matrix Ha, as explained in Section II-B.
The logic synthesis tool is then applied to Ga to generate the
corresponding circuit CEa . Some gates of CEa may be critical,
in the sense that injecting only one fault at the output of such
gates may result in a very large number of errors at the output
of the circuit. In the following, we propose to modify the
encoding circuit CEa by duplicating the critigal gates, so as to
limit their impact on the primary outputs of the circuit.

IV. GATE DUPLICATION

A gate of the encoding circuit is critical when the output of
the gate is propagated to a large number of primary outputs
of the circuit. The criticality degree of a gate c`, denoted by
cdeg(c`), is defined as the number of primary outputs to which
c` is connected by at least one path. Thus, injecting one error
in gate c` will produce at most cdeg(c`) errors on the output.

In order to reduce the high error propagation effect induced
by critical gates, we propose an algorithm to duplicate the
gates with high criticality degree. In this section, we introduce

Algorithm 1 Node duplication
Fix CT > 1
while max` cdeg(c`) > CT do

Select the gate to duplicate
Lc ← arg max

c`∈{c1,...,cL}
cdeg(c`)

Cg ← arg max
c`∈Lc

P`

cg ← one gate at random in Cg
Identify the successors of cg
Sg ← succ(cg)
Separate the set of successors into two sets
S0 ← Sg,1, S1 ← Ø, B0 ← Bg,1, B1 ← Ø
for j = 2 to length(Sg) do

if length(B0 ∩ Bg,j) > length(B1 ∩ Bg,j) then
S1 ← S1 ∪ {cj}, B1 ← B1 ∩ Bg,j

else
S0 ← S0 ∪ {cj}, B0 ← B0 ∩ Bg,j

end if
end for
Reconstruct the circuit with the new gate
C ← {c1, . . . , cL+1}
TL+1 = Tg , NL+1 = Ng , IL+1 = Ig
Sg = S0, SL+1 = S1, OL+1 = Og + 1
for ` = 1 to L do

if O` > Og then
O` = O` + 1

end if
end for
L = L + 1

end while

the algorithm we propose for gate duplication and provide a
theoretical analysis of the algorithm.

A. Duplication Algorithm

We fix a criticality threshold value CT > 0. In the dupli-
cation algorithm, the gates with criticality degree cdeg(c`) >
CT will be duplicated until the following condition is reached

max
c`

cdeg(c`) ≤ CT. (9)

The gate duplication algorithm relies on the circuit descrip-
tion CEa of the encoding function Ea. We denote B` the list
of length cdeg(c`) of primary outputs to which gate c` is
connected by at least one path.

Our gate duplication algorithm is given in Algorithm 1.
At each step of Algorithm 1, one gate cg ∈ {c1, . . . , cL} is
selected for duplication as follows. Among the set Lc of gates
with maximum criticality degree cdeg(c`), we identify the set
Cg ⊆ Lc of gates with the highest processing level P`. We
select the gate cg to duplicate at random in Cg .

We then identify the set Sg of direct successors of the
selected gate cg , as well as the sets Bg,j of primary outputs to
which all the successors cj ∈ Sg are connected. We separate
the set Sg of successors into two sets S1 and S2, with as
much as possible equal number of primary outputs associated



to each set. To finish, we replace gc with two gates; each gate
is allocated one of the two sets of successors S1 or S2. We
reconstruct the circuit with the new gate, and update the circuit
parameters.

At the end, duplicating a gate will reduce the criticality
degree of the two substituted gates, at the price of a complexity
increase, that is an increase in the number of 2-input XOR
gates involved in the circuit. In the following, we show that
the complexity increase induced by the duplication algorithm
is limited to only what is needed.

B. Analysis of the Algorithm

As a justification of the construction of Algorithm 1, we
show that it has the following property.

Proposition 1: If Algorithm 1 is applied to any combina-
tional circuit for a given value CT, the sum of criticality
degrees

L∑
`=1

cdeg(c`) (10)

for the resulting circuit does not depend on CT.
Proof: First consider the duplication of one single gate cg

in the circuit. Denote c1 and c2 the two gates resulting from
the duplication of cg . The proof of the Proposition is done by
contradiction.

First, if cdeg(cg) > cdeg(c1)+cdeg(c2), then one or several
primary outputs to which cg was connected is not connected
to c1, nor to c2, which is impossible. We thus get

cdeg(cg) ≤ cdeg(c1) + cdeg(c2). (11)

Second, let B1 and B2 be the sets of primary outputs
to which c1 and c2 are connected, respectively. Condition
cdeg(cg) < cdeg(c1) + cdeg(c2) is verified only if B1 and B2
are not disjoint. Since the combinational circuit is a directed
acyclic graph, B1 and B2 are not disjoint in the two following
cases: (i) there is a reconvergent fan-out in the circuit, which
means that the signal splits into two and then reconverges, (ii)
cg has only one single successor cg′ .

Case (i) cannot appear in our case since the circuit is
composed by 2-input XOR gates only. In case (ii), cg′ is such
that cdeg(cg′) ≥ cdeg(cg). Condition cdeg(cg′) > cdeg(cg)
is impossible, since from Algorithm 1 all the gates c` with
cdeg(c`) > cdeg(cg) have already been duplicated. Condition
cdeg(cg′) = cdeg(cg) is impossible neither, since cg′ has
necessarily a processing level Pg′ higher than Pg and should
already have been duplicated by Algorithm 1. Thus, case (ii)
cannot appear as well, and we get

cdeg(cg) ≥ cdeg(c1) + cdeg(c2) (12)

From conditions (11) and (12), we get

cdeg(cg) = cdeg(c1) + cdeg(c2), (13)

which shows the Proposition.
Proposition 1 shows that the algorithm we propose for gate

duplication does not add any needless gate and therefore limits

the complexity increase induced by gate duplication to only
what is needed.

At the end, gate duplication will reduce the effect of
error propagation at the price of a complexity increase. In
the following, we evaluate through Monte Carlo simulations
the encoding error probability of the proposed Augmented
Encoding and gate duplication methods. In particular, we
analyze the tradeoff between encoding error probability and
circuit complexity.

V. EXPERIMENTAL RESULTS

In this section we evaluate the performance of Augmented
Encoding for the two following QC-LDPC codes
• dv3-r12 with dv = 3, r = 1/2, m = 646, n = 1292,
• dv4-r12 with dv = 4, r = 1/2, m = 645, n = 1290.

The two considered code are regular, and dv represents the
variable node degree of the code. The extra parity bits are
obtained from the Split-Extended construction. The two codes
dv3-r12 and dv4-r12 are such that n+na = 1944. For the two
considered codes, it corresponds to splitting each parity check
equation into two sub parity check equations, see Figure 3 for
the code dv3-r12.

In the following, we evaluate the performance of our LDPC
encoder for the two codes in terms of encoding error proba-
bility and of complexity.

A. Error Probability Analysis

In this section, we consider the two codes, and measure their
Bit Error Rate (BER) with respect to the gate error probability
pxor. The performance is measured in terms of Bit Error Rate
(BER) rather than in Frame Error Rate (FER). Indeed, at
the encoding part, the objective is not to retrieve the actual
codeword, but to drastically diminish the amount of errors in
the codeword before channel transmission.

For the dv4-r12 code, Figure 4 represents the BER with
respect to the gate error probability pxor for various values of
criticality threshold CT. Here, the BER is measured after the
noisy Gallager B LDPC decoder used at the transmitter side,
except for the case without Augmented Encoding, where it is
measured at the end of the Boolean circuit.

In Figure 4, the first upper curve represents the case without
Augmented Encoding. In our simulations, we observed that
this curve does not change with gate duplication. Indeed, when
the value of CT is high, depending on the frames, the error
probability at the end of the Boolean circuit is either very
small, or very high due to error propagation, which makes the
LDPC decoder fail. When the value of CT is low, the error
probability is the same in average, but it is less balanced from
one frame to one another.

In Figure 4, we see that the curve with Augmented Encoding
but without gate duplication is still very close to the uncoded
curve, due to high error propagation. Then, when the value
of CT decreases, the BER considerably reduces. Even for
CT= 50, for pxor = 10−5, the BER reduces by a factor 103

compared to the case without Augmented Encoding. By setting
CT= 25, we even gain a new decade in BER.



10−6 10−5 10−4 10−3 10−210−10

10−8

10−6

10−4

10−2

100

pxor

BE
R

No Aug. Enc. (36235 gates)
No gate dup. (68902 gates)
CT=50 (71745 gates)
CT=25 (75912 gates)
CT=10 (91269 gates)
CT=5 (117981 gates)

Fig. 4. Output BER with respect to pxor, dv4r12 code

Figure 5 represents the BER with respect to pxor for the dv3-
r12 code. For CT= 50, the BER is higher than for the previous
code. On the other hand, the BER is approximately the same
for CT= 25, and it is lower for CT= 10 and CT= 5. At
the end, Augmented encoding combined with gate duplication
greatly improves the robustness of the encoding, at the price
of a complexity increase, as we now discuss.

B. Complexity Analysis

In this section, we analyze the complexity of the combi-
natorial circuits that realize the encoding. The complexity is
evaluated in terms of number of 2-input XOR gates involved
in each Boolean circuit. For each considered setup, the number
of gates is given in the legends of Figure 4 for the dv4-r12
code, and of Figure 5 for the dv3-r12 code.

As expected, the Augmented Encoding increases the number
of gates needed by the encoder. The increase in complexity
corresponds to approximately a factor 2, which is expected
since every parity check equation of H is splitted into two
parity check equations in Ha. Note that, for a complete com-
plexity evaluation of the Augmented Encoder, one should also
take into account the LDPC decoder used at the transmitter
side.

Concerning gate duplication, for both codes, we see that
the number of gates involved in the circuit does not increase
much with CT, except for CT= 5. Consequently, in terms of
complexity, it is worthwhile to apply gate duplication, at least
for values of CT higher than 10. For both codes, setting CT=
25 appears to be a good tradeoff between BER performance
and complexity of the circuit.

VI. CONCLUSION

In this paper, we proposed an LDPC encoding solution
robust to hardware errors. The proposed Augmented Encoding
solution consists of computing an augmented codeword that
contains both the codeword to be transmitted on the channel
and extra parity bits. The extra parity bits used in Augmented
Encoding are obtained from a split-extended code construc-
tion. As a second part of our robust LDPC encoding solution,
we proposed a gate duplication algorithm that identifies and
duplicates the gates of the encoding circuit responsible for

10−6 10−5 10−4 10−3 10−210−10

10−8

10−6

10−4

10−2

100

pxor

BE
R

No Aug. Enc. (34913 gates)
No gate dup. (67104 gates)
CT=50 (69901 gates)
CT=25 (74029 gates)
CT=10 (89156 gates)
CT=5 (115956 gates)

Fig. 5. Output BER with respect to pxor, dv3r12 code

high error propagation. Through finite length simulations,
we showed that Augmented Encoding combined with gate
duplication greatly improves the robustness of the encoder.

ACKNOWLEGEMENT

This work was funded by the Seventh Framework Pro-
gramme of the European Union, under Grant Agreement
number 309129 (i-Risc).

REFERENCES

[1] S. Zaynoun, M. Khairy, A. Eltawil, F. Kurdahi, and A. Khajeh, “Fast
error aware model for arithmetic and logic circuits,” in IEEE 30th
International Conference on Computer Design (ICCD). IEEE, 2012,
pp. 322–328.

[2] L. Varshney, “Performance of LDPC Codes Under Faulty Iterative
Decoding,” IEEE Transactions on Information Theory, vol. 57, no. 7,
pp. 4427–4444, 2011.

[3] C.-H. Huang, Y. Li, and L. Dolecek, “Gallager B LDPC Decoder with
Transient and Permanent Errors,” IEEE Transactions on Communica-
tions, vol. 62, no. 1, pp. 15–28, 2014.

[4] C. K. Ngassa, V. Savin, E. Dupraz, and D. Declercq, “Density Evolution
and Functional Threshold for the Noisy Min-Sum Decoder,” IEEE
Transactions on Communications, vol. 63, no. 5, pp. 1497–1509, 2015.

[5] E. Dupraz, D. Declercq, B. Vasic, and V. Savin, “Analysis and design
of finite alphabet iterative decoders robust to faulty hardware,” IEEE
Transactions on Communications, vol. 63, no. 8, pp. 2797–2809, 2015.

[6] J. Hachem, I. Wang, C. Fragouli, S. Diggavi et al., “Coding with
encoding uncertainty,” in Proceedings of International Symposium on
Information Theory, 2013, pp. 276–280.

[7] E. Dupraz and D. Declercq, “Evaluation of the robustness of LDPC en-
coders to hardware noise,” in IEEE International Black Sea Conference
on Communications and Networking, 2015, pp. 87–91.

[8] Y. Yang, P. Grover, and S. Kar, “Can a noisy encoder be used to
communicate reliably?” in 52nd Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), 2014, pp. 659–666.

[9] ——, “Computing linear transformations with unreliable components,”
arXiv preprint arXiv:1506.07234, 2015.

[10] V. Savin, “Split-extended LDPC codes for coded cooperation,” in
International Symposium on Information Theory and its Applications
(ISITA), 2010, pp. 151–156.

[11] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transac-
tions on Information Theory, vol. 47, no. 2, pp. 619–637, 2001.

[12] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 638–656, 2001.

[13] L. Ping, X. Huang, and N. Phamdo, “Zigzag codes and concatenated
zigzag codes,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 800–807, 2001.

[14] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding
of quasi-cyclic low-density parity-check codes,” IEEE Transactions on
Communications, vol. 53, no. 11, pp. 1973–1973, 2005.


