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Abstract— In this paper we propose a uniformly reweighted parameter which, in general, depends on the iteration and
a posteriori probability (APP) decoder. It is derived as an node considered. As the simplest case, we consider the
algorithm of approximate Bayesian inference on the LDPC nitormly reweighted APP decoder, where a constant value
code graph, and a correction parameter is introduced and . . ' .
numerically optimized to overcome the suboptimaly of the 'S, used. for the correctlpn Pafamete_r and optlmlzgd through
decoder and improve performance compared to the original Simulations. The experiments on binary symmetric channel
APP decoder. In addition, we propose a memory efficient show that the optimal parameter value does not depend
implementation of the algorithm that requires memory that  on the cross-over probability value and that URAPP has
is linear only in the codeword length. significantly better performance than the original versidén

|. INTRODUCTION the APP introduced in [1].

Although the APP decoders can be implementes in a mem-

Be!ief propagatior! (BP) is an !teratiV(_a message-passirlgfy efficient way, this advantage has not been recognized
algorithm for decoding low density parity check (LDPC)iy"the original paper [1]. On the other hand, the existing

codes, widely used in many systems. Despite its good errpfomary_aware hardware architectures of APP decoders [4],
correctlon_pgrformances and capability of approa(_:hlng t suffer from the performance degradation caused by
Shannon limit, BP suffers from large memory requirementg her approximations of variable node processing fumti

for message processing and storage, proportional 0 thgrqyced to reduce complexity. As the second contrilputio
number of edges in the Tanner graph of the_ _code. Such large ihe paper, we propose a memory-efficient realization
memory requirements, coupled with addlltlonal hardwargs the reweighted APP decoder, which requires memory
resources needed for the message updating, make the BB, tional to the number of nodes in the Tanner graph

less attractive in applications with stringing constrint ¢ the | DPC code, rather than to the number of edges, as
A posteriori probability (APP) decoder [1] is a SUbOpt'malproposed in [1], which is a significant saving.
alternative to BP, in which the variable node processing e paper is organized as follows. In Section Il we

?S s_im_plified by allowing variables to send messages N 8froduce the notation and give deffinitions. The URAPP
intrinsic manner, and a message from a variable node CQfacoger is derived in the Section Ill, while its memory

responds to a posteriori value used to estimate that variablicient implementation is considered in the Section IVeTh
This property admits a memory efficient implementation. - i 1ation results are presented in the Section V.
The APP decoder can be seen as an iterative Bayesian

procedure which computes the a posteriori bit probabslitie Il. PRELIMINARIES

conditioned on the previously estimated probabilities tred 5 regular LDPC code is a linear block code defined by
set of check node constraints. Its suboptimality comes from sparse parity-check matriéf. We denote by(AM, N) the
the approximation by which only the closest check constraij;e of 7. A codeword is a vector — (21,22,...,2N) €
neighborhood of a variable node is taken into account durin&l}z\r that satisfiesHz” — 0, where z? denotes the

the iterative Bayesian procedure. . ~ transposed (column) vector. The Tanner graph [6] of an
In this paper we propose a parameterized version @ppc code is a bipartite graph whose adjacency matrix is
the APP decoder called uniformly reweighted APP decodgfe parity-check matrix of the codd. It contains two types
(URAPP), which can be seen as a suboptimal variant of thg odes: a set of variable-node¢ — {v1,02, ..., U8},
tree reweighted belief propagation [2], [3]. The algoritisn corresponding to theV columns of H, and a set of check-
derived in the Bayesian framework and the source of thgogespt = {¢;, ¢y, ..., crr}, corresponding to thé/ rows

suboptimalily is recognized and treated using a reweighteg} r7. A variable-nodey,, and a check-node,, are connected

“This work is funded in by the NSF under grants CCF-131414a anPY @0 €dge if and only if the corresponding entry fdfis
CCF-0963726 and in part by the Seventh Framework Programmeeof tf10N-Z€ro.
European Union, under Grant Agreement number 309129 (i-Ri8feqt). The set of indices of check-nodes connected to the

Velimir 1li¢ is with Mathematical Institute SANU, Belgrade, Serb'avarlable-node;n is denoted Wlth/\/l(n) and the set of indices
velimr.ilic@nail.com . .

2Elza Dupraz is with ETIS laboratory, Cergy-Pontoise, Feanc Of. variable-nodes _Conneclted to the CheCk'an9$ den_Oted
dupraz@nsea. fr with A/(m). The direct neighborhood of a nodg is defined

3David Declercq is with ETIS laboratory, Cergy-Pontoise,ariae with M(n) _ U M )U' Nm)\ v;
decl ercq@nsea. fr ] meM(n) JieN (m)\n Vi:
4Bane Vast is with Department of ECE, University of Arizona, Tucson We consider the binary symmetric channel (BSC), where

vasi c@ce. ari zona. edu a binary codeworde is transmitted, and we denote hy=



(y1,92,--.,yn) the received sequence. The BSC is definedhere
by the probabilistic model

1 1
" 5_5 1‘[ (1 — 24k (20)); for z, =1
m=1 rLeN(m) 5 + 5 n 1 — 24, xn)), for z, =0
where P(z|y) is a channel likelihoodl is the indicator keN (m)\n )
function andZneN(m) x, are modulo2 sums determined .
; Once we have computed the a posteriori values

by the parity check matrix. The probability). = Pr(z # y)

is called cross-over probability. {Pn}n=1..n using the expression (3), they are are assign

to the a priori probabilitiesp, },—1.. v and new iteration

I1l. REWEIGHTED APP DECODER starts. As an initial prior probabilities the channel likelods
The goal of the decoding is to compute the a posteriofff(yn|z.) are taken. Note that the check node likelihoods
probability depend ory,,, only in the first iteration.
Pr(z,|y,C) (1) Recall that in APP decoders two types approximations for

) the check likelihood computation are done:
whereC = { ¥ nrm) @k = 0}, i the set of constraints

defined by the parity check matrix According to the channel *
model the a posteriori probability can be expressed by the
usage of the Bayesian formula

Only the local constraints (i.e. in the direct neighbor-

hood) are directly taken into account, and

« The check likelihoods are computed using the a priori
probabilities which are obtained through the iterative

Pr(ealy,C) o Prlyalea) x Pr(Clany, ), (2) process.

In the following paragraphs we propose the parameterized
version of the APP decoder called uniformly reweighted APP
decoder (URAPP). The drawbacks of the APP decoder are
handled using a reweighting parametefor improving the

where we denotey,,, = (Y1, -, Yn—1,Yn+1s-- -, YN)-
Belief propagation (BP) has been introduced to approxi-
mately compute the a posteriori probability (1) by iterativ

computation of the check likelihoods x"’y\”z Us- correctness of a check node likelihood computation. The

ing the computed check likelihoods, BP in eac iteratiorliJRl,_\PP is derived from the equations (3) and (4), in a way
successively produces estimated a posteriori probasiliti that the probabilityj,.. (), given by (5), is replaced with
{Pn}n=1..n, for the codeword symbols,,, which are used its o escort distribution [8]:

for decision making on bit values.

The computation procedure is exact if the Tanner graph (o) Do (Tn)
corresponding to the code is a tree, while it achieves verypm”(x") Prn (@n) = Sope (xn) O €[0,1]. (6
good accuracy for sparse codes. Its computational contplexi o
is low, but it requires a memory storage growing with the Accordingly, the URAPP decoder runs as follows.
number of edges in the graph, which is often seen as a limita-
tion for practical applications. In this section we consiile
suboptimal variant called the a posteriori probability AP
decoder, and propose an uniformly reweighted APP decoder,

1) For all nodesy, initialize a priori values taj, (z,,) =

Pr(zn | yn);
2) For all nodes,, compute a posteriori probabilities:

which do not have this drawback. Bl@n) o pp(@n) H Do (22)®,  (7)
Let a set of the constraints which corresponds to the meM(n)

neighborhood of the node, be denoted withC, =

{ Xken(m) Tk = O}meM(n). Suppose that we have already wherep,,.(z,,) is computed according to (5);

given the set of estimated probabiliti¢gy, } . v,y for the 3) For all nodesv,, setg, <— p, and go to 2 until a

bits in the neighborhood of a node, called a priori convergence criterion has been reached.

probabilities . The APP decoder [1] makes simplification of |, the limit cases.a
a posteriori probabilities (1) and computes the probadbdit
Pr(xn|y,Cm{qk}keM(n)) instead of Pfz,|y,C). Accord-
ing to the Bayes formula we have

= 0 and @« = 1, the escort

distribution reduces to the uniform and to the original one,

respectively. Accordingly, as the becomes smaller, the

escort distribution becomes closer to the uniform distidyu

Pr(z,]y,C) ~ Pr(z,|y, Cy, {@k}keM(n)) o Put differently, in the case of smadl the check likelihood

will be smoothed and the equation (7) will be determined

P (Ynlzn) x Pf(Cn T, Y {@k}ke/\h(n)> - (3)  py the channel likelihood. Oppositely, in the caseaof 1

In the similar way as in the BP, the check node Iikelihoodéhe URAPP reduces to APP decoder. The optimal value for

are computed in an iterative process. First, according Jto [ 'S PetweerD and L. If properly optimized, the parameter
the check likelihoods can be computed as « can significantly improve the accuracy of the a posteriori
probability estimation. In Section V we present the experi-

Pr(cn 1Z0, Yo { G} e M(n)) = ] Pmalza), (4 mental results for the URAPP when theis determined by
meM(n) a brute force optimization.



IV. MEMORY EFFICIENT IMPLEMENTATION OFURAPP  Algorithm 1: SEmI-PARALLEL URAPPDECODER
DECODER

Input: vy = (y1,...,yn) € YN > received word
For the implementation purposes, in order to avoid theyytput: & = (&4, ...,4y) € {0, 1}V = estimated
computation of the normalization coefficient in the equatio  c5deword
(7) and to reduce the number of multiplications, the APP
decoders are commonly represented in log-ratio domain |pitialization:
message passing version [1]. The message passing version
can be directly derived from the previously defined steps 1-3 Pr(z, =0lyn) .

for each {v,},=1,. N dO 7, = log

if we set Pr(z, = 1ly,)’
An 1 Amn 1 nfn= 50 — .
4, =log 2 W and fimsm = log £ (1 for each {vn }n=r....x d0 35 = Yn;
Pn (0) pmn(o)
as follows. Iteration loop: k£ > 0
Initialization: Variable-nodes are initialized ta priori Total check-sum computation
values(v1,7z, - - ., 7a), Which are in the case of BI-AWGN  for each {cp}m=1,.. s do Wkt = ARt
channel equal to the received sequerige,ys,--.,yn), neN (m)
prior to the first iteration of the APP decoder: partial a posteriori update
for each {¢; }m=1,.. 1 dO
() _ ., _ P& =Olyn) 8 for each v, € H(c,,) do
Tn Tn — . 8)
P(xy, = 1ly,)

) ) — \Ijk_l ~k—1
Iterative processing: K m Hn
1) Check-node processing: consists in computing the Fn = An + ap

check-to-variable messagﬁgln, for all check-nodes

m and their neighbor variable-nodes; a posteriori update

for each {v,},—1, n do4E—t =4k

pk) %(C’“*l), 9) hard decision

keN (m)\n for each {v,}n=1,.. v do &, = (1 —sign(3,,))/2

where stands for the summation over the set if & is codewordthen exit the iteration loop
€N (m)\n
N (m)\n induced by the box-sum operation defined as gnq iteration loop
1+eeY
=log —— 10
rHy =log-—o—o (10)

2) A posteriori information update: consists in computing
the a posteriori messagaé,k), for all variable-nodes
Uny

In a common, parallel message passing implementation of
the APP decoder, all the variable nodes take the message
Sk) o (k) 17) @t same time, the a posteriori values are computed, which
Tn T Z Hm—n (11) completes one iteration. Although this version provideghhi
throughput, it suffers from the high memory requirements,
3) Hard decision: Estlmated (binary) values of sent b'tsproportmnal to the number of edges in the Tanner graph,

x = (xiﬁfzv BN, accokrdmg to the fU|e‘Yn >0 since an iteration requires the storing of all check to \dea
thenz? = 0, otherwuseyo( ) = 1. The decoder stops messages for one iteration.

when e|therag is a codgword or a maximum number In the Algorithm 1 we present semi-parallel, memory
of decoding iterations is reached. efficient implementation of the URAPP decoder, based on
Check to variable messages requires the computation @ ideas proposed in [9] for the BP algorithm. Instead of

meM(n)

all partlal sumkeN(m)\n ’71(@ WhICh can efflClentIy be the messages, we store 0n|y the Vah;ﬁlé'sl = . ?yfl’ 1
computed using the inverse operatlon focalled minus-box neN (m)
operator: which are used for the computation of the posterior values
1—e*ey 4%, and at one iteration, all variable nodes can be partially
By = 1Og — ey (12) updated during the computations in all variable nodes. Both
It is easy to check thatlyEy = . Using theD] operator, implementations provide exactly the same output after each
the sum iteration and have the same computational requirements.
gk = %(Ckfl) (13) Although the former one has the smaller throughput, since
keN (m)\n two check nodes might try to access the same variable node

o update its a posteriori value, it needs the storing ondy th

Values in variable nodes. As a result it have the complexity
proportional to the number of nodes, which is a significant
ok = U =35 (14) saving.

can be computed once per iteration and node, and all the
messages can be computed forrat A'(m) as
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V. REWEIGHTING FACTOR OPTIMIZATION AND throughput systems [5]. Optimal reweighted parameter is
SIMULATION RESULTS obtained through simulations. The results of the optindrat

rocedure, for the maximal number of iterations are set

In this section we present simulation results for th 0 5, 10 and 20, are shown in Figures 1, 2 and 3. They
URAPP' We consider Tanng(375) code ,[6]' Decode.rs show that the optimum value of reweighted factor does
with small number of iterations and suitable for high-



not depend on the cross-over probability, but only on thes]
maximal number of iterations. As discussed in Section lll,
the reweighted factor slows down the convergence. Thig]
agrees with the simulation results, which show that thefg]
value of the factor is inversely proportional to the maximum
number of iterations. Fig. 4 shows the bit error rate (BER)
performances of standard and uniformly reweighted APR9]
decoders, with reweighting parameters obtained from the
optimization procedure, for the maximal number of iterasio ;g
K =5, K =10 and K = 20. For K = 5, optimal value of

the reweighting factory is 0.7 and there is not a significant
BER improvement over the unweighted APP decoder. As the
K becomes larger the effect anis larger, specially in the
error floor region, since the reweighting factor emphasizes
puts a higher importance on the channel likelihoods.

VI. CONCLUSION

In this paper we proposed memory efficient uniformly
reweighted APP decoder (URAPP) for decoding of LDPC
codes, with the memory complexity proportional to the
number of nodes in the Tanner graph of the code. The
algorithm can be seen as an suboptimal variant of the
tree reweighted belief propagation [2], [3] and operates as
a parameterized Bayesian inference algorithm, improving
the performances of previously propose APP decoder [1].
Subotpimallity of the APP decoder comes from the fact
that in each iteration and for each variable node only the
neighboring check constraints are taken into account. We
introduced the reweighting parameter which deals with this
source of suboptimallity and empirically showed the sig-
nificant performance improvements even in the case when
the a constant value is used for the correction parameter.
Taking into account the graph structure and dynamics of the
URAPP decoder for the parameter estimation seem like a
promising direction, which is the part of our future work
on the parameter adaptive version of the reweighted APP
decoder. The simulation results on binary simetric channel
for Tanner(3,5) code [6] show that the reweighting factor
does not depend on the cross-over probability, but only en th
maximal number of iterations taken in to decoder. Currently
we are exploring its dependence on LDPC code parameters.
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