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Abstract—In this paper, we consider the construction of a
Slepian-Wolf source coding scheme in a context where only a
small amount of data has to be transmitted to the decoder.
In this context, we propose a novel rate-adaptive Slepian-Wolf
code construction that is based on non-binary LDPC codes. The
construction we propose replaces the regular accumulator of the
standard LDPCA method by a local graph that is optimized at
every rate of interest. In our method, the local graph is specifically
designed in order to give good decoding performance at short
length, while existing LDPCA constructions are usually optimized
under an infinite codeword length assumption. Our simulation
results on short codes obtained from our design method show a
FER improvement of up to an order to magnitude compared to
the standard LDPCA construction.

I. INTRODUCTION

The problem of lossless source coding with side information
available at the decoder only (see Figure 1) was initially intro-
duced by Slepian and Wolf in [1]. This problem has recently
regained increased attention due to its use in many modern
multimedia applications such as sensor networks [2], Free-
Viewpoint Television [3], or Massive Random Access (MRA)
to data [4]. In these applications, the source X often represents
the current data to be transmitted (e.g. the current view of
a video), while the side information Y corresponds to the
previously transmitted data (the previously transmitted views).
It is therefore crucial to design highly efficient and reliable
Slepian Wolf coding schemes for the above applications.

It is well known that practical Slepian-Wolf codes can be
constructed from error-correction codes such as Low Den-
sity Parity Check (LDPC) codes [5]. Standard LDPC code
constructions assume that the level of correlation between
the source X and the side information Y is fixed. However,
in the aforementioned applications, the correlation level can
vary from one transmission to another. Several constructions
such as Rateless codes [6] or LDPC Accumulator (LDPCA)
codes [7]–[9] have then been proposed in order to adapt the
coding rate depending on the correlation level.

LDPC codes and their rate-adaptive counterparts are known
to achieve their best performance for very long codewords
(more than 10000 bits). However, in a context such as sensor
networks, only a small amount of data (less than 1000 bits)
needs to be transmitted. The data collected by the sensors
indeed corresponds to measurements of e.g. temperature or
pressure. In order to be able to use very long codes in this
context, one could consider grouping several successive frames
of data. Unfortunately, this strategy may induce an important
latency as well as increased memory requirements for the

sensors. As an alternative, one may consider short codes
that match the measurement vector length, at the price of a
reasonable loss in performance [10]. For short frames of data,
non-binary LDPC codes are known to be more efficient than
binary LDPC codes [11].

The objective of this paper is thus to construct short-
length rate-adaptive non-binary LDPC codes for Slepian-Wolf
coding. Most of the constructions proposed for this problem
consider binary codes optimized from design tools that assume
asymptotic codeword length [6]–[9]. The solutions that were
proposed for the design of non-binary codes [12], [13] are
mainly direct applications of the methods proposed for binary
codes. However, at short-length, the code performance may be
degraded by short cycles, or by a poor choice of the non-binary
labels associated to the edges of the Tanner graph of the code.
The existing constructions optimized from asymptotic design
tools do not permit to address these issues.

In this paper, we propose a novel method for the design of
short-length rate-adaptive non-binary LDPC codes for Slepian-
Wolf coding. More in details, we propose a generalized
LDPCA construction that replaces the regular accumulator of
the original constructions of [7], [13] by a local graph designed
so as to optimize the code performance at short length for
every rate of interest. In the paper, we describe this new
method and we provide the design rules for the construction
of the local graph. The design rules we propose permit to
address: 1) the fine control of the connections between the
variable nodes and the check nodes in the Tanner graphs used
for the decoding at different rates, 2) the issue of cycles in
these Tanner graphs, 3) the careful non-binary edge labeling.
Monte Carlo simulations realized on short codes over GF(256)
and GF(16) show a clear performance improvement of up to an
order of magnitude compared to the non-binary rate-adaptive
construction proposed in [13].

The outline of the paper is as follows. Section II describes
the existing solutions for the design of rate-adaptive Slepian-
Wolf codes. Section III introduces our novel method for the
construction of non-binary rate-adaptive Slepian-Wolf codes.
Section IV shows the simulation results.

II. LDPC CODES FOR SLEPIAN-WOLF SOURCE CODING

In this paper, we consider the lossless coding of a source
X when a side information Y is available at the decoder only,
see Figure 1. The sources X and Y generate symbols in the
Galois Field GF(q) with q elements, where q is a power of two.
The non-binary source symbols may come either from non-
binary measurements with q possible values (e.g. the pixels of



Fig. 1. Slepian-Wolf source coding

an image), or by grouping log2(q) binary digits into a non-
binary symbol in GF(q). We assume that the sources X and
Y are correlated and that each of them generates sequences
of independent and identically distributed (i.i.d.) symbols.
The probability mass function of the source X is denoted
as P (X = a), ∀a ∈ GF(q). The conditional probability
distribution of Y knowing X is denoted as P (Y = b|X = a),
∀a, b ∈ GF(q).

The minimimum achievable rate for lossless Slepian-Wolf
coding of the source X is given by the conditional entropy
H(X|Y ) [1]. It was shown in [5] that LDPC codes permit to
build a practical Slepian-Wolf coding scheme that achieves a
rate close to H(X|Y ).

A. Slepian-Wolf coding from LDPC codes
Assume that the source X generates a vector of n source

symbols xn = (x1, · · · , xn). Denote by H the parity check
matrix of size m × n of an LDPC code [14]. The matrix H
is sparse and the non-zero components of H take values in
GF(q) \ {0}. The matrix H is equivalently represented by a
bipartite Tanner graph T = (V, E), where V defines the set
of vertices, and E defines the set of edges in the graph. The
set V = (X ∪ S) is composed by n variable nodes X =
{X1, · · · , Xn} and m check nodes S = {S1, · · · , Sm}. The
edges in the set E are given by the non-zero positions in the
parity check matrix H and they are labeled by the values at
the corresponding positions in H .

In order to compress the source sequence xn, the encoder
produces a codeword

sm = H(xn)T (1)

where T is the transpose operator and all the arithmetic
operations are performed in the Galois Field GF(q). The
codeword sm is composed by m symbols in GF(q) and it
is assumed to be transmitted without error to the decoder. The
coding rate is hence given by R = m/n. The decoder has to
estimate the source vector xn from the received codeword sm

and from the side information vector yn = (y1, · · · , yn). For
the estimation of xn, we rely on a standard non-binary Belief
Propagation (BP) decoder [15] that is initialized with the side
information vector yn.

In the above scheme, both the rate R and the parity
check matrix H are designed so as to ensure good decoding
performance for a fixed statistical model between X and Y .
Consider for example a q-ary symmetric correlation channel of
parameter p between X and Y . Since R and H are designed
for a given p, a change in this value will result either in a rate
loss if p is decreased, or even worse in a decoding failure
if p is increased. This is why several rate-adaptive LDPC
code constructions have been proposed in order to deal with
a change in the correlation model between X and Y .

B. Rate-adaptive LDPC codes for Slepian-Wolf coding

Two main solutions were proposed to construct binary rate-
adaptive Slepian-Wolf codes. Rateless codes proposed in [6]
start from a matrix H with a low rate R. If a rate higher
than R is required, the encoder transmits both the syndrom
sm and additional linear combinations of the source symbols
(x1, · · · , xn). Unfortunately, this approach has difficulties to
achieve good performance at very low rates [16].

As a reverse solution, LDPCA codes proposed in [7], [8]
start with a high rate matrix H . In the LDPCA construction,
the check nodes values (s1, · · · , sm) are first accumulated by
calculating new parity equations (a1, · · · , am) as

a1 = s1,

ai = ai−1 + si, ∀i ∈ {2, · · · ,m}. (2)

If a rate lower than R is required, only a part of the symbols
(a1, · · · , am) is transmitted to the decoder.

In order to improve the binary LDPCA construction, it
was proposed in [9] to consider a non-regular accumulator
optimized for any rate of interest. The optimization method
proposed in [9] is based on a so-called density evolution anal-
ysis that assumes asymptotic codeword length. Unfortunately,
in our context, the density evolution analysis may not predict
accurately the performance of short-length codes which can
be degraded for example by short cycles in the Tanner graph.

A rate-adaptive LDPC code construction was further pro-
posed in [13] in order to deal with non-binary source symbols.
The design method proposed in [13] starts with an intermediate
rate, usually R = 1/2. The rates higher than 1/2 are obtained
from the solution of [6] by revealing a part of the non-
binary source symbols to the decoder. The rates lower than
1/2 are obtained from a non-binary LDPCA construction. The
method of [13] however straightforwardly applies the LDPCA
construction of [7] without optimizing the accumulator, which
lowers its performance. In this paper, we thus propose a novel
non-binary LDPCA construction that greatly improves the
performance of the coding scheme of [13]. Compared to the
approach of [9], our design method is based on a finite length
performance evaluation rather than on density evolution, and it
is thus well adapted to the construction of short length LDPC
codes.

III. PROPOSED METHOD

This section describes our design method for the con-
struction of short-length rate-adaptive non-binary Slepian-Wolf
codes. As in [13], we start with an LDPC code of rate R = 1/2
called the mother code. For rates higher than 1/2, we rely
on the source revealing method proposed in [13] which is
already shown to be efficient for high rates (out of the scope
of the paper). For rates lower than 1/2, we propose a new
construction which we present in this section. We first describe
our construction for only one rate lower than R = 1/2, we
then generalize this construction to several rates.

A. Mother code

In our method, the mother code consists of a matrix H1

of size m1 × n with coding rate R1 = m1/n = 1/2. The
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Fig. 2. The left part of the figure shows the combination of T1 with T1→2.
The right part of the figure shows the resulting T2. Here, the matrix H1→2

is full rank, and one may choose S′ = {S1, S2}, S′ = {S3, S4}, S′ =
{S1, S4}, or S′ = {S2, S3}.

Tanner graph T1 = (X ∪ S, E1) associated to H1 connects
the n variable nodes X = {X1, · · · , Xn} to m1 check
nodes S = {S1, · · · , Sm1}. For the construction of H1,
we apply a standard non-binary LDPC code design method
that consists of three steps. We first select a code degree
distribution or a protograph that maximizes the code ensemble
threshold [17]. We then construct a binary parity check matrix
of the selected code ensemble from a progressive edge growth
(PEG) algorithm that permits to avoid as much as possible
short cycles in the Tanner graph of the code [18]. To finish,
we assign non-binary labels to all the non-zero components of
the parity check matrix of the code. The non-binary labels are
chosen so as to maximize the minimum distance of the binary
image of each parity check equation [11]. In this paper, we
do not give more details on the construction of H1 from this
procedure. The code construction we propose indeed works
for any choice of H1.

B. Daughter code

From the mother matrix H1, we want to construct a daughter
matrix H2 of size m2 × n, with m2 < m1, and rate R2 =
m2/n < 1/2. The Tanner graph T2 = (X ∪ U , E2) associated
to H2 will connect the n variable nodes X = {X1, · · · , Xn}
to m2 check nodes U = {U1, · · · , Um2

}. In order to obtain
the daughter matrix H2 from the mother matrix H1, we
construct an intermediate matrix H1→2 of size m2×m1. The
Tanner graph T1→2 = (S ∪ U , E1→2) of H1→2 connects the
check nodes S of T1 to the check nodes U of T2. With this
construction, the matrix H2 of rate R2 is then equal to

H2 = H1→2H1. (3)

Figure 2 shows an example of the construction of T2 from T1
and T1→2. Note that LDPCA codes can be seen as a particular
case of this construction.

At the end, the matrix H1→2 should be chosen not only to
give a good decoding performance for H2, but also to allow
H1 and H2 to be rate-adaptive in a sense we now define.

C. Rate-adaptive condition

In our construction, we set the following transmission rule
in order to allow H1 and H2 to be rate-adaptive. In order to

get a rate R2, we simply transmit all the parity check values
defined by the set U , which corresponds to m2 equations. The
decoding is then realized with the matrix H2. In order to get
a rate R1, we transmit all the parity check values in U but
also a subset S ′ ⊆ S of size m1 −m2 of the values in S . In
order to use the matrix H1 for decoding, the receiver must be
able to recover the values in S from U and S ′. The code that
results from the choice of (H1, H1→2, S ′) is then said to be
rate-adaptive if is satisfies the following condition.

Definition 1. U and S ′ define a system of m1 equations with
m1 unknown variables S. If this system has a unique solution
in GF(q), then the triplet (H1, H1→2, S ′) is said to be a
rate-adaptive code.

This condition is equivalent to the 1-SR condition formal-
ized in [19] and considered in [20] in the context of channel
coding. Note that the standard LDPCA construction satisfies
the above rate-adaptive condition. The following proposition
gives a simple condition that permits to verify whether a given
choice of H1→2 can lead to a rate-adaptive code.

Proposition 1. If the matrix H1→2 is full rank, then there
exists a set S ′ ⊆ S of size m1 −m2 such that (H1, H1→2,
S ′) is a rate-adaptive code.

Proof: The variables U1, · · · , Um2
define m2 equations

of m1 variables S1, · · · , Sm1 . Consider m1 −m2 additional
virtual equations Um2+1, · · · , Um1 such that for all i ∈ {m2+
1, · · · ,m1}, Ui equals one of the variables S1, · · · , Sm1

. Also
define an extended matrix H̃1→2 of size m1 ×m1. The first
m2 rows of H̃1→2 are given by H1→2. The last m1 − m2

rows will define to which variable of S each Ui (i > m2) is
equal. Since H1→2 is full rank, we can always identify m2

linearly independent columns in H1→2. For each of the m1−
m2 remaining columns, it is always possible to put a value 1 in
one of the last m1−m2 rows of H̃1→2 such that each of these
rows contains only one non-zero value. This guarantees that
H̃1→2 is full rank. The positions of the m1 −m2 remaining
columns in fact defines a possible set S ′, which concludes the
proof.

The above proposition shows that if H1→2 is full rank, it
is always possible to find a set S ′ that ensures that H1 and
H2 are rate-adaptive. As a consequence, as long as H1→2 is
full-rank, the decoding performance does not depend on the
choice of the set S ′, since at rate R1, the decoder uses H1 and
at rate R2, the decoder uses H2. On the contrary, according
to equation (3), the decoding performance of the matrix H2

still heavily depends on the choice of the matrix H1→2.

D. Construction of the matrix H1→2

In order to get a good decoding performance for H2, we can
play on two degrees of freedom for H1→2. These two degrees
of freedom are the construction of the set of edges E1→2 in
the Tanner graph T1→2, and their non-binary labeling. We now
discuss the constraints we set for the optimization of these two
degrees of freedoms.

1) Set of edges: We impose two constraints for the con-
struction of the set of edges E1→2. The first constraint is that



every node in U must be connected to at least one node in
S , and conversely. If this constraint is not satisfied, the matrix
H1→2 cannot be full rank. The second constraint is that T1→2

does not contain any cycle (see Figure 2 for an example). The
rationale of this constraint is to avoid as much as possible
adding cycles in the resulting H2.

2) Non-binary labeling: Once the set of edges E1→2 is
defined, we choose the non-binary labels of the edges as
follows. For each row of H1→2, we choose a combination
of labels that maximizes the minimum distance of the binary
image of the corresponding parity check equation [11]. There
are several combinations of labels that satisfy the previous
condition. We verify that the selected combination: 1) does
not make a column of H2 empty (each variable node in H2 is
connected to at least one check node), 2) does not give twice
the same coefficient in the same row of H2 (this could degrade
the performance of H2), 3) produces a full rank matrix H1→2.

From [11] and from Proposition 1, we know that once it
satisfies the above constraints, the labeling will not change
much the decoding performance. This is why, for each possible
set of edges E1→2, we choose at random one labeling that
satisfies the above conditions. If, for a given set E1→2, no
labeling satisfying these conditions exists, the considered set
E1→2 is discarded. We then select the set of edges E1→2 that,
combined with the labeling chosen for this set of edges, gives
the best matrix H2 (verified from Monte Carlo simulations).

The number of possible sets of edges E1→2 is rather small
due to the constraints we impose on these sets. In particular,
discarding the sets of edges that contain cycles does not allow
high node degrees in the resulting Tanner graph. The number
of possible sets E1→2 is also reduced by the fact that we
consider short codes. This is why, in our code construction
process, we fixed a maximum node degree of three and
we selected the set of edges by a random search over the
admissible sets E1→2. The performance of each considered
set E1→2 was evaluated from Monte Carlo simulations over
the resulting H2. More efficient methods will be developed in
future works.

At the end, since the retained H1→2 is guaranteed to be
full-rank, we know that there exists a set S ′ that permits the
rate adaptation between H1 and H2. Since the choice of this
set does not affect the decoding performance, we choose any
set S ′ that gives a (H1, H1→2, S ′) rate-adaptive code.

E. Generalization to several rates

The above construction permits to obtain the matrix H2 of
rate R2 < R1 from the matrix H1. In order to obtain lower
rates RI < RI−1 < · · · < R2 < R1, we need to construct
the corresponding matrices Hi, i = 2, · · · , I . The successive
matrices Ri are constructed recursively from the above method
for two rates. More precisely, the matrix Hi is obtained from
Hi−1 by constructing an intermediate matrix Hi−1→i such
that Hi = Hi−1→iHi−1. The intermediate matrix Hi−1→i is
constructed following the design rules of Section III-D.

We now consider two constructions of rate-adaptive codes
in GF(256) and in GF(16), and we evaluate their performance
for different rates.
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Fig. 3. FER performance in GF(256) of the proposed construction compared
with LDPCA

IV. SIMULATION RESULTS

This section evaluates the performance of our design method
compared to the standard LDPCA construction. In our simu-
lations, we assume that the source X is distributed uniformly.
The correlation between X and Y is modeled by the following
q-ary symmetric channel

∀a ∈ GF(q), P (Y = a|X = a) = 1− p

∀a, b ∈ GF(q), a 6= b, P (Y = b|X = a) =
p

q − 1
. (4)

Note that this model is considered here as a test case for
the simulations, although the proposed construction applies
whatever the statistical model between X and Y . In this
section, we consider short codes of length N = 128 bits and
source symbols in GF(256) or in GF(16).

A. Code construction in GF(256)

We first consider source symbols X in GF(256). We con-
sider a code of length N = 128 bits, which corresponds
to 16 source symbols in GF(256). For the mother code of
rate R = 1/2, we use the already well designed (16, 8) JPL
matrix given in [21]. We then apply the method described in
Section III in order to construct all the lower rates Ri = i/16,
i = 2 · · · , 7.

We want to evaluate the performance of our method com-
pared to the standard LDPCA construction proposed in [13]
for non-binary LDPC codes. In [13] the non-binary coefficients
in the accumulator were chosen uniformly at random, despite
the fact that this choice may negatively impact the code
performance. This is why, here, in order to allow a fair
comparison with our method, the LDPCA construction was
realized by choosing the non-binary labels in the accumulator
so as to maximize the minimum distance of the binary images
of the parity check equations. This labelling comes for the
method of [11] for the construction of non-binary LDPC
channel codes. It is also employed for the labeling in our rate-
adaptive method, see Section III-D.

Figure 3 represents the obtained Frame Error Rates (FER)
for the LDPCA construction and for our design method for
four rates 1/8, 1/4, 3/8, and 1/2. Note that we represented
only three rates lower than 1/2 in order not to overload the
Figure. At all the considered rates, even those that are not
shown in the figure, we see a clear gain of sometimes an order
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of magnitude compared to LDPCA (except for the rate 3/16,
which shows a slight loss in performance). This gain does not
come from the non-binary labelling since we have employed
the same labeling both for our method and for the LDPCA
construction. This gain most surely comes from the fact that
our construction is optimized from design rules that lead to a
good performance at finite length for each considered rate.

B. Code construction in GF(16)

We now consider source symbols in GF(16) and a code
of length N = 128 bits, which gives 32 source symbols in
GF(16). In order to obtain the mother code of rate R = 1/2,
we followed the code construction procedure of [11]. More
in details we constructed a Quasi-Cyclic code from the R32A
protograph

B =

[
2 1 1 1
1 1 1 1

]
(5)

by applying a two-steps lifting described in [22], with a
first lifting factor of 4 and a second lifting factor of 2. We
then applied the method described in Section III in order
to construct the three lower rates 1/8, 1/4, and 3/8. We
compared the performance of our method to the performance
of the LDPCA construction with a carefully chosen labeling
as we did for the code in GF(256).

Figure 4 represents the obtained Frame Error Rates (FER)
for the LDPCA construction and for our design method for the
three considered rates. In this case again, our method gives
better performance than the LDPCA construction, whatever
the considered rate. Rates 1/8 and 1/4 exhibit a gain of more
than an order of magnitude compared to LDPCA, which shows
that our method is particularly efficient for very low rates.

These two sets of simulations permit to conclude that our
construction method outperforms the LDPCA solution by
specifically optimizing the codes performance at short length.

V. CONCLUSION

In this paper, we proposed a novel rate-adaptive construction
for short-length non-binary Slepian-Wolf codes. The construc-
tion we proposed permits to optimize the code performance
at short length for all the rates of interest. Simulation results
confirmed the efficiency of the proposed approach compared
to the standard LDPCA construction. Future works will be
dedicated to the development of more efficient methods in

order to construct the successive codes in a more systematic
way.
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