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Abstract—This paper proposes a new construction of rate-
adaptive coding schemes based on Low Density Parity Check
(LDPC) codes for Slepian Wolf source coding. Unlike standard
rate-adaptive source coding schemes, the code construction we
propose is based on finite-length code design tools that permit to
greatly improve the decoding performance at short to moderate
length. In particular, our method permits to limit the number
of short cycles in the codes at all rates of interest, and to
avoid eliminating some source bits from the code constraints. The
proposed method shows a performance improvement of up to an
order of magnitude at almost all the considered rates compared
to the standard LDPCA construction.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were invented by
Gallager in 1962 [1] and they are known to almost approach the
Shannon capacity in channel coding. LDPC codes can also be
used in Slepian-Wolf (SW) source coding that is the problem of
source coding with side information available at the decoder [2].
Several recent source coding problems can be represented as
SW source coding, like Distributed Source Coding (DSC) in
sensor networks [3], Free Viewpoint Television (FTV) [4] or
Massive Random Access (MRA) [5]. For instance, in FTV, the
source X represents the current view to be transmitted, while
the source Y represents the previously transmitted view.

In the SW scheme, the coding rate depends on the statistical
model between the source and the side information. But in the
aforementioned applications, this statistical model can change
from one transmission to another. Using an LDPC code with
a fixed rate may cause either a rate loss or a decoding failure.
This is why we need to consider rate-adaptive LDPC codes.
There are two traditional LDPC-based rate-adaptive schemes
for SW source coding, that are Rateless codes [6] and LDPC
Accumulate (LDPCA) codes [7].

The Rateless scheme [6] starts by constructing a low-rate
code LDPC code. In order to obtain higher rates, it sends all
the parity bits and a part of the source bits. The construction
of good low-rate LDPC codes is however a difficult problem
and is thus the main issue of this scheme [8]. On the opposite,
the LDPCA scheme [7] uses a high-rate LDPC code as initial
code. In order to obtain lower rates, it computes accumulated
parity bits and sends only a part of the accumulated parity bits.
However, the LDPCA construction does not allow a fine control
of the code structures at lower rates. In particular, when we use
LDPCA, an important amount of short cycles may be created
and some constraints for source bits may be eliminated. Both

features degrade the decoding performance of LDPCA if not
avoided.
The combination of Rateless and LDPCA methods is a way to
improve the construction of rate-adaptive LDPC codes. In [9],
[10], it is proposed to start with an initial code of rate 1/2
referred to as the mother code and then to apply either the
Rateless scheme to get higher rates or the LDPCA scheme
to get lower rates. Such a construction avoids the shortage
of the Rateless scheme, but does not solve the problems
raised by the LDPCA construction. The solutions that were
proposed to improve the LDPCA construction only optimize
the code construction from design tools that assume asymptotic
codeword length [11], [12]. However, in applications such as
DSC in sensor networks or MRA, the codeword length can be
short (from 100 to 1000 bits). Asymptotic design tools do not
permit to address the cycle issue that highly degrades the code
performance at these lengths.

In this paper, we propose a new method to replace the LD-
PCA part in the rate-adaptive code construction proposed in [9].
The method we propose is based on a rate-adaptive structure
that was initially proposed in [10] for non-binary LDPC codes.
In [10], the code construction is realized from an exhaustive
search which is not convenient when the codeword length
increases. For instance, a non-binary LDPC code of size 12×24
in GF(256) corresponds to a binary code of size 96 × 192,
for which the exhaustive search becomes unfeasible. In this
paper, we propose a more efficient systematic construction that
is based on finite-length code design tools and permits a fine
control of the code structures at rates lower than R = 1/2. In
particular, it allows a great reduction of the number of short
cycles at these rates and it also avoids constraint elimination
for all the source bits. In the end, the proposed method shows
better performance of up to an order of magnitude compared
to LDPCA at almost all the considered rates.

The paper is organized as follows. Section II describes
the existing rate-adaptive LDPC code constructions for SW
source coding. Section III presents the rate-adaptive construc-
tion of [10]. Section IV introduces our new method for the
construction of rate-adaptive LDPC codes. Section V shows
the simulation results.

II. LDPC CODES FOR SLEPIAN-WOLF SOURCE CODING

This section first explains how LDPC codes can be used for
SW source coding. It then describes the standard rate-adaptive
code constructions and their limitations.



A. LDPC Codes

Fig. 1. Slepian-Wolf source coding

In the SW source coding scheme depicted in Figure 1,
the source Y is used as side information at the decoder in
order to reconstruct the source X . In this paper, we consider
binary sources X and Y . The source X (respectively Y )
generates independent and identically distributed (i.i.d.)
symbols X1, · · · , Xn (respectively Y1, · · · , Yn). The
probability mass function of the source X is denoted by
P (X = i) , i = {0, 1}. The conditional probability mass
function or correlation channel between X and Y is denoted
by P (Y = j | X = i) , i, j ∈ {0, 1}. LDPC codes allow to
achieve a coding rate close to the theoretical limit H (X | Y )
of the lossless SW coding scheme [2] (the theoretical rate
without side information is H(X) ≥ H(X|Y )).

Here, since we assume binary sources X and Y , we consider
binary LDPC codes. Let xn = (x1, x2, · · ·xn)T stand for a
source vector of length n to be transmitted to the decoder.
We denote by H a LDPC parity check matrix with dimension
m × n (m < n). This gives a coding rate R = m/n. The
matrix H is sparse and its non-zero components are all equal
to 1. The syndrome sm = (s1, s2, · · · sm)

T that is transmitted
to the decoder is calculated from xn and H as

sm = H · xn (1)

The decoder produces an estimate x̂n of xn by applying the
Belief Propagation algorithm (BP) to the received syndrom
sm and the side information vector yn [2]. The decoding
performance highly depends on the choice of the parity check
matrix H .

The parity check matrix H can alternatively be represented
by a Tanner Graph. The Tanner Graph connects the n Variable
Nodes (VN) x1, · · · , xn with the m Check Nodes (CN)
s1, · · · , sm. There is a connection between a VN xi and a CN
sj if there is a 1 at the corresponding matrix position Hi,j .
The Tanner Graph representation of H will help us construct
an LDPC code with good performance, as we now describe.

B. Construction of the Parity Check Matrix H

LDPC codes can be constructed either from the code degree
distribution [13] or from a protograph [14]. Density Evolu-
tion [15] permits to evaluate under asymptotic conditions the
theoretical threshold of a given degree distribution or a given
protograph. The theoretical threshold is the maximum correla-
tion channel parameter that gives a decoding error probability
Pe = 0. It can thus be used as an optimization criterion. For a
given coding rate R = m/n, Differential Evolution [16] can be

used in order to find the degree distribution or the protograph
with the best threshold.

Once the protograph or the degree distribution is fixed, the
Progressive Edge Growth algorithm (PEG) [17] can be used
to construct the parity check matrix H . The PEG algorithm
permits to lower the number of short cycles that could severely
degrade the decoding performance of the matrix H .

C. Rate-Adaptive LDPC Codes

In the above code construction, the coding rate R is fixed
once for all, which implicitly assumes that the statistical model
between X and Y does not vary. But if this statistical model
evolves from one transmission to another, sending the data at
rate R will cause either a rate loss or a decoding failure. In order
to avoid this situation, we can consider rate-adaptive LDPC
codes such as Rateless or LDPCA codes.
The Rateless scheme starts by constructing a low-rate LDPC
code. If a higher rate is needed, all the syndrom bits sm and a
part of the sources bits xn will be sent. However, it is difficult
to construct good low-rate LDPC codes [8]. Therefore, it is
not desirable to apply the Rateless construction from very low
rates.
On the opposite, the LDPCA scheme uses a high-rate LDPC
code as initial code. It then computes new accumulated symbols
am = [a1, a2, · · · , am]T from sm as

a1 = s1,

ai = ai−1 + si, ∀i = {2, · · · ,m}

If a lower rate is demanded, only a part of the symbols
(a1, a2, · · · , am) will be sent. The problem of the LDPCA
construction is that the accumulator structure is fixed and
does not allow to select the combinations of syndrom symbols
si. The accumulator structure may in particular induce short
cycles in the lowest rates and eliminate some source bits from
the CN constraints.
Due to the drawbacks of Rateless and LDPCA schemes,
an intermediate solution was proposed in [9]. It constructs
an initial code of rate R = 1/2. It then applies either the
LDPCA method to obtain rates lower than 1/2 or the Rateless
method for rates higher than 1/2. In this way, the shortage
of the Rateless method can be avoided. But the LDPCA
structure still suffers from the same cycle issue and from
the source bit elimination problem, and it needs to be improved.

III. RATE-ADAPTIVE CONSTRUCTION

The rate-adaptive construction we propose to replace LDPCA
is based on a structure initially introduced in [10] for the
construction of non-binary rate-adaptive LDPC codes.

A. Code Construction

In the method proposed in [10], the mother code consists of
a matrix H1 of size m1 × n with coding rate R1 = m1/n =
1/2. The Tanner graph T1 associated to H1 connects the n
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Fig. 2. The left part of the figure shows the combination of T1 with T1→2.
The right part of the figure shows the resulting T2. Here, the matrix H1→2

is full rank, and one may choose between S′ = {s1, s2}, S′ = {s3, s4},
S′ = {s1, s4}, or S′ = {s2, s3}.

VNs X = {x1, · · · , xn} to m1 CNs S = {s1, · · · , sm1
}. For

the construction of H1, we apply a standard code design as
described in Section II.

From the mother matrix H1, we want to construct a daugh-
ter matrix H2 of size m2 × n, with m2 < m1, and rate
R2 = m2/n < 1/2. The Tanner graph T2 associated to H2

will connect the n VNs of X to m2 CNs U = {u1, · · · , um2}.
In order to obtain the daughter matrix H2 from the mother
matrix H1, we construct an intermediate matrix H1→2 of size
m2 ×m1. The Tanner graph T1→2 of H1→2 connects the m1

CNs S of T1 to the m2 CNs U of T2. With this construction,
the matrix H2 of rate R2 is then equal to

H2 = H1→2H1. (2)

Figure 2 shows an example of the construction of T2 from T1
and T1→2. Note that LDPCA codes can be seen as a particular
case of this construction. The matrix H1→2 should be chosen
not only to give a good decoding performance for H2, but also
to allow H1 and H2 to be rate-adaptive in a sense we now
define.

B. Rate-adaptive Condition

In our construction, we set the following transmission rule
in order to allow H1 and H2 to be rate-adaptive. In order to
get a rate R2, we simply transmit all the parity check values
defined by the set U , which corresponds to m2 equations. The
decoding is then realized with the matrix H2. In order to get a
rate R1, we transmit all the parity check values in U but also
a subset S ′ ⊆ S of size m1 −m2 of the values in S. In order
to use the matrix H1 for decoding, the receiver must be able
to recover the values in S from U and S ′. The sets U and S ′
define a system of m1 equations with m1 unknown variables S.
The code that results from the choice of (H1, H1→2, S ′) is then
said to be rate-adaptive if this system has a unique solution. It
was shown in [10] that if the matrix H1→2 is full-rank, then
there always exists a set S ′ ⊆ S such that (H1, H1→2, S ′) is
a rate-adaptive code.

As a consequence, as long as H1→2 is full-rank, the decoding
performance does not depend on the choice of the set S ′, since
at rate R1, the decoder uses H1 and at rate R2, the decoder uses
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Fig. 3. Since the VN x3 appears in both s1 and s2, combining these CNs
into u1 makes x3 disappear in H2.

H2. On the contrary, according to equation (2), the decoding
performance of the matrix H2 still heavily depends on the
matrix H1→2. In [10] the matrix H1→2 is constructed from an
exhaustive search. In the following, we propose a more efficient
method that permits to avoid as much as possible short cycles
in the matrix H2.

C. Generalization to Several Rates

The above construction permits to obtain the matrix H2 of
rate R2 < R1 from the matrix H1. In order to obtain lower
rates RI < RI−1 < · · · < R2 < R1, we need to construct
the corresponding matrices Hi, i = 2, · · · , I . The matrix Hi

is obtained from Hi−1 by constructing an intermediate matrix
Hi−1→i such that Hi = Hi−1→iHi−1. In the following, we
only describe the construction of the matrix H1→2. The other
matrices Hi−1→i are obtained with exactly the same method.

IV. CONSTRUCTION OF THE INTERMEDIATE MATRICES

As the decoding performance of the matrix H2 heavily
depends on the matrix H1→2, the careful choice of the con-
nections in T1→2 is very important. Constructing H1→2 can be
seen as combining the CNs S of H1 in order to create the CNs
U of the new parity check matrix H2. Combining the CNs S
can however cause three issues that could degrade the decoding
performance of H2.

First, combining some of the CNs of H1 could degrade the
connectivity of some VNs in H2, see Figure 3 for an example.
In the worst case, some VNs may not be connected anymore
to any CNs in H2. Second, combining H1 and H1→2 may
introduce short cycles in H2 which could severely degrade the
decoding performance. As a third issue, the matrix H1→2 has
to be full rank in order to satisfy the rate-adaptive condition
described in Section III-B. The construction method we now
propose for H1→2 addresses these three issues through the
choice of the degree distribution and of the connections in
H1→2.

A. Degree distribution for H1→2

In order to be able to construct the intermediate matrix
H1→2 in a systematic way, we first need to choose a degree
distribution for H1→2. As a first constraint, we impose that
each CN si ∈ S is connected to exactly one CN of U . We also
impose that each uj ∈ U is connected to one or more CN of
S. These two conditions ensure that H1→2 will be full rank. In
addition, the CNs in S are all of degree 1, and we only need
to describe the degree distribution of the uj ∈ U .



We denote the degree distribution of the CNs in U in H1→2

as (α, d), where α = [α1, · · · , αK ], d = [d1, · · · , dK ], and
K represents the number of possible degrees. The value αk

denotes the proportion of CNs of U connected to exactly dk
symbols of S. The degree distribution (α, d) satisfies

m1

m2
=

K∑
k=1

αkdk. (3)

Note that the degree distribution (α, d) of the CNs in U in
H1→2 is not the same as the degree distribution of the CNs U in
H2. We could think of optimizing the degree distribution (α, d)
in H1→2 by applying density evolution on the resulting degree
distribution in H2. However, here, in order to focus on the finite
length code construction, we do not consider optimization from
density evolution and we simply choose the degrees dk as small
as possible. For example, if R2 = 3/8, we set d = [1, 2] and
the proportions α1 and α2 are set to α1 = 1/2, α2 = 1/2.
Setting low degrees in H1→2 increases the chances of avoiding
short cycles in the resulting H2.

B. Connections in H1→2

We now explain how to choose the connections between
S and U according to the degree distribution (α, d). In our
method, the degree of each CN uj ∈ U is selected at random
according to the degree distribution (α, d). Then, whatever
the degree dk of a given uj , we impose the following two
conditions in order to choose the CNs of S that will be
connected to uj :

1) We choose dk CNs in S that are not connected to any
common VN. This permits to avoid eliminating VN con-
nections in the resulting H2.

2) We choose the dk CNs in S in order to minimize the
number of resulting cycles in H2.

Condition 1) is very easy to verify while condition 2)
requires to count the number of cycles in H2. There exists
several methods to calculate the number of shorts cycles in
the parity check matrix of an LDPC codes. Here, since we
are mainly concerned with short cycles, we choose the method
proposed in [18] which is very efficient for the counting of
short cycles of length 4, 6, and 8.

Then, in order to construct uj , we need to select dk CNs
of S. The first CN si is selected at random from the set of
CNs that have not yet been used in any already constructed
u′j . The next dk − 1 CNs si are chosen so as to minimize the
number of length-4, length-6, and length-8 cycles introduced
in H2 by the newly created uj . In order to select the best
dk − 1 CNs si, we try T possible combinations of dk − 1
CNs selected at random from the set of remaining CNs. As an
example, Algorithm 1 shows the algorithm that is used in a
particular case (α, d) = (1, 2) when we only want to minimize
the number of length-4 cycles.

C. Construction of the set S ′

The degree distribution defined in Section IV-A as well as
the code construction proposed in Section IV-B ensure that

Algorithm 1 Construction of the intermediate matrix H1→2 in
the particular case (α, d) = (1, 2)

Fix T , C = {1, 2 · · · ,m1}
for j = 1 to m2 do

Fix MinCycle = ∞
Select a value p at random among the set C
Remove p from the set C
for t = 1 to T do

Select a value q at random among the set C
if sp and sq are connected to a common VN, then

break
else

Count the number NbCycles of length-4 cycles in
H2 with j-th line H2,j = H1,p ⊕H1,q

if NbCycles < MinCycle then
MinCycle = NbCycles
Set qchoosen = q

end if
end if

end for
Set H2,j = H1,p ⊕H1,qchoosen

end for

N4(C1) N6(C1) N4(C2) N6(C2)

R = 1/2 0 1856 0 584
R = 3/8 LDPCA 256 5232 204 2256
R = 3/8 Proposed 184 6823 83 2232
R = 1/4 LDPCA 928 15328 568 5600
R = 1/4 Proposed 465 19073 200 6130
R = 1/8 LDPCA 2632 67384 2336 42620
R = 1/8 Proposed 2425 166227 1193 53101

TABLE I
NUMBER OF LENGTH-4 (N4) AND LENGTH-6 (N6) CYCLES FOR THE TWO

CONSIDERED CODES

the matrix H1→2 is full rank. This guarantees that the rate-
adaptive condition presented in Section III is satisfied. In order
to completely define the rate-adaptive code (H1, H1→2,S ′), we
need to define a set S ′ of symbols of S that will be sent together
with the set U in order to obtain the rate R1.

The set S ′ will serve to solve a system of m2 equations U
with m2 unknowns S \S ′. For each equation ui ∈ U of degree
dk, we hence decide to put dk − 1 of the dk CNs connected
to ui into S ′. For example, if u1 = s1 ⊕ s2 ⊕ s3, s1 and s2
can be placed into S ′. This strategy gives that the set S ′ is, as
expected, composed by

K∑
k=1

αk(dk − 1)m2 = m1 −m2 (4)

different CNs of S . It also guarantees that it is always possible
to reconstruct the set S from U and S ′. In the above example,
it indeed suffices to recover s3 as s3 = u1 ⊕ s1 ⊕ s2.

V. SIMULATIONS

In this section, we evaluate the performance of the proposed
solution compared to LDPCA. The two codes which we choose
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to evaluate were obtained from [19]. The first code called C1

code is of size 128 × 256. The second code called C2 code
is generated from a WiMax protograph. It is of size 96× 192.
These two codes have rate R = 1/2. For each of the two codes,
we generated three codes of rates 3/8, 1/4, 1/8, both with the
LDPCA method and with our construction. In our algorithm,
only short cycles of length 4 were considered.

In our simulations, we assumed a binary symmetric channel
of parameter p and we evaluated the Bit Error Rate (BER)
performance of both LDPCA and our construction for the two
considered codes. The results are shown in Figure 4 for the code
C1 and in Figure 5 for code C2. In both cases and for almost
all rates, we observe that our rate-adaptive construction gives
a better performance than the LDPCA. It even outperforms
LDPCA by almost one order of magnitude. The only particular
case is the rate 3/8 for code C1. In this case, LDPCA shows
slightly better performance than our method. After a cycle
analysis given in Table I from the method of [18], we observe
that at all rates, our code construction contains less length-4
cycles than LDPCA, which explains its improved performance.
On the opposite, our code construction contains more length-
6 cycles than LDPCA. This probably explains why LDPCA
works slightly better than our method for the rate 3/8 for C1.
This can probably be improved in the future. We can however
conclude that our method works better than LDPCA in almost
all the considered cases.

VI. CONCLUSION

In this paper, we proposed a novel rate adaptive LDPC
code construction method for short-length binary Slepian-Wolf
codes. The proposed method permits to avoid VN elimination
from the code constraints and minimizes the number of short
cycles at all the considered rates. From numerical simulations,
it has been demonstrated to be superior to LDPCA code in
almost all the considered rates.
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