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In this work

P(Y |X ) partly unknown to both encoder and decoder

No feedback [AZG02, YH10]
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NB LDPC

Non-binary LDPC codes for SW coding

Non-binary LDPC codes for SW coding [LFK09, LXG02]

P(X ,Y ) is perfectly known, X in GF(q)

Encoding in GF(q) (m < n)

sm = HTxn

VN
CN

MAP decoding of xn from sm and yn

x̂n = arg max
k∈GF(q)

P(Xn = k |Yn = yn,s
m)
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NB LDPC

Non-binary LDPC codes for SW coding

LDPC decoding [LFK09, LXG02]

Initial messages m
(0)
n ∈ Rq

m
(0)
n,k = log

P(Xn = 0|Yn = yn)

P(Xn = k|Yn = yn)

Messages from CN to VN

m
(`)
c→n = A [sc ]F−1

(
∏

n′∈Nc\n
F
(
W
[
hn′,c

]
m

(`−1)
n′→c

))

Messages from VN to CN

m
(`)
n→c = ∑

c ′∈Nn\c
m

(`)
c ′→n

+m(0)
n
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NB LDPC

Density evolution for SW coding

Code degree distributions [RSU01]

sm = HTxn

Degree distributions for H

λ (x) = ∑i≥2λix
i−1,

ρ(x) = ∑i≥2ρix
i−1 r(λ ,ρ) = ∑i≥2 λi/i

∑i≥2 ρj/j

(λ (x),ρ(x)) need to be optimized
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NB LDPC

Density evolution for SW coding

Principle of density evolution [BB06, LFK09]

Messages represented by random variables

(M
(0)
n |Xn = k)∼ Pk

(0), (M
(`)
c→n|Xn = k)∼ Pk

(`), (M
(`)
n→c |Xn = k)∼Qk

(`)

cycle-free assumption: independent random variables

Example: from VN to CN

m
(`)
n→c = ∑

c ′∈Nn\c
m

(`)
c ′→n

+m(0)
n

Pk
(`) = ∑

i≤2
λi

(
Pk

(0)⊗
(
Qk

(`−1)
)⊗(i−1))

Then P
(`)
e (λ ,ρ) from P

(`)
k

and Q
(`)
k
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Density evolution for SW coding
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Problem: the probabilities depend on the input codeword
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NB LDPC

Density evolution for SW coding

Symmetric channel

Symmetry (X ,Y in GF(q))1

P(Y |X ) is symmetric if there exists a bijective function h : GF (q)→ GF (q) s.t.

P(Y = y |X = x) = P(Y = h−1(h(y)⊕ x)|X = 0)

X = 0 X = 1 X = 2 . . .
Y = 0 p0 p1 p2 . . .
. . . . . . . . . . . . . . .
Y = q−2 pq−2 pq−1 p0 . . .
Y = q−1 pq−1 p0 p1 . . .

Examples: Y = X ⊕Z , any linear channel, BSC, q-ary sym., etc.

1
Elsa Dupraz, Valentin Savin, Aline Roumy, Michel Kie�er Density Evolution for the Design of

Non-Binary Low Density Parity Check Codes for Slepian-Wolf Coding, Technical report
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NB LDPC

Density evolution for SW coding

All-zero codeword assumption [LFK09]

All-zero codeword assumption

If P(X ,Y ) s.t.

X distributed uniformly

P(Y |X ) symmetric

then P
(`)
k

,Q
(`)
k

are independent of x

The all-zero codeword is assumed

Problem: assumptions on P(X ,Y ) not reasonable in SW coding
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NB LDPC

Density evolution for SW coding

Source equivalence

Equivalent source (X ∈ GF(q), Y discrete)1

For every P(X ,Y ) there exists a P(U,W ) such that

U is distributed uniformly

P(W |U) is symmetric

P(X ,Y ) and P(U,W ) have the same DE equations

All-zero codeword assumption for P(U,W )

1
Elsa Dupraz, Valentin Savin, Aline Roumy, Michel Kie�er Density Evolution for the Design of

Non-Binary Low Density Parity Check Codes for Slepian-Wolf Coding, Technical report
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NB LDPC

Density evolution for SW coding

Equivalent source construction1

Setting W = (W1,W2), we get

P(W1 = k ,W2 = y |U = i) = P(X = k⊕ i ,Y = y)

H(X |Y ) = H(U|W )

1
Elsa Dupraz, Valentin Savin, Aline Roumy, Michel Kie�er Density Evolution for the Design of

Non-Binary Low Density Parity Check Codes for Slepian-Wolf Coding, Technical report
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NB LDPC

Density evolution for SW coding

Numerical results

q-ary correlation channel
...

...

GF(4), X ∼ [0.5,0.25,0.125,0.125], r = 1/2, p = 0.225

Max VN deg. 6 10 15 Reg

p 0.214 0.220 0.221 0.083
H(p) 0.483 0.492 0.494 0.246

GF(16), X ∼ [0.4,0.04, . . . ,0.04], r = 1/2, p = 0.367

Max VN deg. 10 15 20 Reg

p 0.319 0.325 0.324 0.198
H(p) 0.452 0.458 0.457 0.32
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NB LDPC

Density evolution for SW coding

Summary

NB LDPC degree distribution design method for SW coding

Degree distribution optimization using MCMC simulations
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SW coding

3 Slepian-Wolf coding with uncertainty
Performance
Practical scheme

Coding scheme for the lossless case, X in GF(q)
Uncertain knowledge of P(X ,Y )
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SW coding

Performance

Performance when the joint distribution is known

P(X ,Y ) perfectly known

Conditional coding

To guarantee error probability asymptotically close to 0 :

R ≥ H(X |Y ) bit/symb. [GL72]
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SW coding

Performance

Performance when the joint distribution is known

P(X ,Y ) perfectly known

Conditional coding Distributed coding

To guarantee error probability asymptotically close to 0 :

R ≥ H(X |Y ) bit/symb. [GL72] R ≥ H(X |Y ) bit/symb. [SW73]
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SW coding

Performance

Uncertain correlation knowledge

De�nition: (X ,Y )∼ P(X ,Y |θ) = P(X )P(Y |X ,θ)

θ ∈Pθ : �xed but unknown parameter

Example: i.i.d. binary sources

θ ∈ [0,θ ]

P(X = 1) = 1/2

BSC(θ): P(Y = 1|X = 0,θ) = P(Y = 0|X = 1,θ) = θ
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SW coding

Performance

Performance with uncertain correlation knowledge

Uncertain correlation knowledge (X ,Y )∼ P(X ,Y |θ)1

Conditional coding

To guarantee err. prob. asymptotically close to 0 :

R ≥ H(X |Y ,Θ = θ) bit/symb.

1
Elsa Dupraz, Aline Roumy, Michel Kie�er Coding strategies for source coding with side information

and uncertain knowledge of the correlation Submitted at IEEE Transactions on Information Theory,

March 2013
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SW coding

Performance

Performance with uncertain correlation knowledge

Uncertain correlation knowledge (X ,Y )∼ P(X ,Y |θ)1

Conditional coding Distributed coding

To guarantee err. prob. asymptotically close to 0 :

R ≥ H(X |Y ,Θ = θ) bit/symb. R ≥ supθ∈Pθ
H(X |Y ,Θ = θ) bit/symb.

1
Elsa Dupraz, Aline Roumy, Michel Kie�er Coding strategies for source coding with side information

and uncertain knowledge of the correlation Submitted at IEEE Transactions on Information Theory,

March 2013
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SW coding

Performance

The three nodes network

Conditional or distributed coding?

X

Y

S
R ≥ H(X |Y ,Θ = θ)

R ≥ supθ∈Pθ
H(X |Y ,Θ = θ)
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SW coding

Performance

The three nodes network

Conditional or distributed coding?

X

Y

S
R ≥ H(X |Y ,Θ = θ)

R ≥ supθ∈Pθ
H(X |Y ,Θ = θ)

The best strategy depends on the true value of θ

28/49



Source coding with side information and uncertain correlation knowledge

SW coding

Performance

The three nodes network

BSC(θ), θ ∈ [0,θ ]
dist. codingconditional coding

X

Y

S

µ2 = µ3 = 1

29/49



Source coding with side information and uncertain correlation knowledge

SW coding

Performance

The three nodes network

BSC(θ), θ ∈ [0,θ ]
dist. codingconditional coding

X

Y

S

µ2 = µ3 = 1 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

= 0.05

conditional coding

distributed coding

= 0.1
= 0.2
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SW coding

Practical scheme

3 Slepian-Wolf coding with uncertainty
Performance
Practical scheme
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SW coding

Practical scheme

Practical decoder1

Two-step EM-based approach: (x(`),θ (`)) at iteration `

LDPC decoding with estimate θ
(`−1) to obtain

P(Xn = k|yn,s,θ (`−1))

Update of the θ
(`) for Y = X ⊕Z , P(Z = k) = θk

θ
(`)
k =

N

∑
n=1

P(Xn = yn	k|yn,s,θ (`−1))

N

∑
n=1

q−1
∑

k ′=0

P(Xn = yn	k ′|yn,s,θ (`−1))

1
Elsa Dupraz, Aline Roumy, Michel Kie�er Source coding with side information at the decoder and

uncertain knowledge of the correlation To appear in IEEE Transactions on Communications
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SW coding

Practical scheme

Numerical results

Symbols in GF(4), r = 3/4, Y = X ⊕Z ,
θ = [θ0, . . . ,θ3], Pr(Z = k) = θk and ∀θ ∈Pθ , θ0 ≥ p

10-6

10-5

10-4

10-3

10-2

10-1

100

0.67 0.675 0.68 0.685 0.69 0.695 0.7 0.705 0.71

E
rr

o
r 

R
a
te

p

Deterministic
Initialization at random

Proper initialization
Genie-aided
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SW coding

Practical scheme

Summary

Performance analysis

in the case with uncertainty
when estimated parameters are available
when an outage is authorized

Coding scheme based on NB LDPC codes able to deal with
the uncertainty
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WZ coding

4 Wyner-Ziv coding with memory
Performance
Practical scheme

Coding scheme for the lossy case, X and Y continuous
Memory on the correlation channel
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WZ coding

Performance

Source model

Hidden Markov model with Gaussian emissions
Y = X +Z , X ∼N (0,σ2

x )

Z : HMM of hidden state S

P(Sk = j |Sk−1 = i) = Pi ,j , (Z |S = s)∼N (0,σ2

s )

p
01

p
10

0 1p
00 p

11
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WZ coding

Performance

Rate-distortion performance [Iwa02]

Distortion measure d(Xn, X̂n) = ‖Xn− X̂n‖2

Rate-distortion function

RX |Y (D) = lim
n→∞

inf
1

n
I (Xn;Un|Yn)

inf on Un s.t. Un ↔Xn ↔Yn and ∃ fn : U n ×Y n →X n s.t. E
[
1

n
d(Xn , fn(U

n ,Yn))
]
≤D

Problem: di�cult to obtain in closed-form expression
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WZ coding

Performance

Genie-aided setup1

RX |Y ,S(D) = ∑
s∈S

psmax

(
0,
1

2
log2

σ2

X |Y ,s

D ′

)

D ′ s.t. ∑s∈S psmin(D ′,σ2

X |Y ,s)≤ D.

1
Elsa Dupraz, Francesca Bassi, Thomas Rodet, Michel Kie�er Distributed coding of sources with

bursty correlation. ICASSP 2012 : 2973-2976, Kyoto, Japan
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Bounds on the rate-distortion function1

RX |Y ,S(D)≤ RX |Y (D)≤ RX |Y ,S(D) +LX |Y (D) + ΛX |Y

LX |Y (D) =
1

2
log2

(
1+

D

σ2

X |Y ,0

)
ΛX |Y = min

(
lim
k→∞

H(Sk |Sk−1), h(Z )− lim
k→∞

h(Zk |Sk)
)

1
Elsa Dupraz, Francesca Bassi, Thomas Rodet, Michel Kie�er Distributed coding of sources with

bursty correlation. ICASSP 2012 : 2973-2976, Kyoto, Japan
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Practical scheme1

H SP est
MMSE

Slepian-Wolf chain

-1

Uniform Scalar Quantizer

SW chain based on NB LDPC codes

MMSE reconstruction based on a sampling method

1
Elsa Dupraz, Francesca Bassi, Thomas Rodet, Aline Roumy, Michel Kie�er Wyner-Ziv coding for

Gaussian sources with Hidden State Markovian Correlation Technical report

42/49



Source coding with side information and uncertain correlation knowledge

WZ coding

Practical scheme

Numerical results
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Summary

Bounds on the rate-distortion function

Practical coding scheme able to exploit the memory on the
sources
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