▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ 二 圖 → 約

1/19

Design of LDPC Codes for Slepian-Wolf coding with uncertain knowledge of the correlation

Elsa Dupraz¹ Aline Roumy² Michel Kieffer^{1,3,4}

¹LSS - CNRS - SUPELEC - Univ Paris-Sud

²INRIA

³LTCI - CNRS - Telecom ParisTech

⁴Institut Universitaire de France

2/19

- Theoretical performance [SW73]
- Coding schemes based on channel codes [LXG02, LXG03, MUM10, XLC04]

In general, perfect knowledge of P(X, Y)

- P(X) unknown [JVW10]
- P(Y|X) given at decoder, partly unknown at encoder [Sga77]

Practical solution

• Feedback channel [AZG02, EY05, VAG06]

Context	Source Definition	Coding scheme	Experimental results	Conclusions
Contout				

In this work

.оптехт

- P(Y|X) partly unknown to both encoder and decoder
- No feedback

Objectives

- Design efficient coding/decoding schemes robust to uncertainty on P(Y|X)
- Solution based on non-binary LDPC codes

<ロト < 部ト < 目ト < 目ト 目 のへの 5/19

2 Source Definition

3 Coding scheme

- 4 Experimental results
- 5 Conclusions

<ロト < 部ト < 目ト < 目ト 目 のへの 6/19

Modeling the uncertainty

Four source models considered in [DRK12]. Here, focus on the Static without Prior Source (SwP-Source)

Definition (SwP-Source)

A SwP-Source (X, Y), produces a sequence of independent discrete symbols $\{(X_n, Y_n)\}_{n=1}^{+\infty}$ drawn from a distribution belonging to

 $\left\{ P(X, Y|\theta) = P(X)P(Y|X, \theta) \right\}_{\theta \in \mathscr{P}_{\theta}}$

 θ is fixed for $\{(X_n, Y_n)\}_{n=1}^{+\infty}$.

Context

3 Coding scheme

4 Experimental results

5 Conclusions

<ロト < 部ト < 目ト < 目ト 目 のへの 8/19 Context

Source Definition

Coding scheme

Experimental results

Conclusions

LDPC-based Encoder in GF(q)

Theoretical Performance [Csi82]

$$R = \sup_{\theta \in \mathscr{P}_{\theta}} H(X|Y,\theta).$$

Degree distributions $(\lambda(x), \rho(x))$ for H dimensioned for the worst case, need to be optimized

Two-step EM-based approach: $(\mathbf{x}^{(\ell)}, \boldsymbol{\theta}^{(\ell)})$ at iteration ℓ

• LDPC decoding with estimate $heta^{(\ell)}$ to obtain

 $P(X_n = k | y_n, \mathbf{s}, \boldsymbol{\theta}^{(\ell)})$

• Update of the $\theta^{(\ell)}$ by maximizing

$$Q(\theta, \theta^{(\ell)}) = E_{\mathbf{X}|\mathbf{y}, \mathbf{s}, \theta^{(\ell)}} [\log P(\mathbf{y}|\mathbf{X}, \mathbf{s}, \theta)]$$
$$= \sum_{n=1}^{N} \sum_{k=0}^{q-1} P(X_n = k|y_n, \mathbf{s}, \theta^{(\ell)}) \log P(y_n|X_n = k, \theta)$$

Two-step EM-based approach

• LDPC decoding with estimate $heta^{(\ell)}$ to obtain

 $P(X_n = k | y_n, \mathbf{s}, \boldsymbol{\theta}^{(\ell)})$

• Update of the $\theta^{(\ell)}$ for $Y = X \oplus Z$, $P(Z = k) = \theta_k$

$$\theta_k^{(\ell+1)} = \frac{\sum\limits_{n=1}^N P(X_n = y_n \ominus k | y_n, \mathbf{s}, \theta^{(\ell)})}{\sum\limits_{n=1}^N \sum\limits_{k'=0}^{q-1} P(X_n = y_n \ominus k' | y_n, \mathbf{s}, \theta^{(\ell)})}$$

Initialization of the EM algorithm (Additive Model)

Additive model: $Y = X \oplus Z$, $P(Z = k) = \theta_k$

• Compute

$$\mathbf{u} = \mathbf{s} \ominus H^T \mathbf{y} = H^T \mathbf{z}$$

Assumption: the U_m are obtained from *i.i.d.* R.V.s $Z_i^{(m)}$.

• Maximize

$$L(\theta) = \log P(\mathbf{u}|\theta) = \sum_{m=1}^{M} \log \mathscr{F}_{u_m}^{-1} \left(\prod_{j=1}^{dc} \mathscr{F}(W[h_j^{(m)}]\theta) \right)$$

3 Coding scheme

<ロト < 部ト < 目ト < 目ト 目 のへの 13/19

Experimental results

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三世

Conclusions

14/19

Experimental framework

Symbols in GF(4),
$$Y = X \oplus Z$$
,
 $\theta = [\theta_0, ..., \theta_3]$ and $Pr(Z = k) = \theta_k$.
 \mathscr{P}_{θ} s.t. $\forall \theta \in \mathscr{P}_{\theta}, \ \theta_0 \ge 0.76$.

Code tuned for the worst case $\theta = [0.76, 0.08, 0.08, 0.08]$

•
$$\lambda(x) = 0.413x + 0.375x^2 + 0.012x^4$$

- $\rho(x) = x$
- R = 1.6 bit/symbol

Context

Experimental results

Conclusions

Initialization of the EM algorithm

MSE of the estimators

Global scheme

1000 source vectors of length 1000 are generated. For each vector, θ selected uniformly at random in \mathscr{P}_{θ} .

Setup	Err	Time (s)	Rate (bit/symb.)
Genie-aided	$< 10^{-5}$	5.4	1.6
Learn. Seq.	$< 10^{-5}$	4.2	1.7
EM	$< 10^{-5}$	9.1	1.6
EM random	$7.2 imes10^{-3}$	47.0	1.6

Conclusions

Summary

• Practical coding scheme based on non-binary LDPC codes when the correlation is uncertain

Future works

- Extension to the lossy case
- Design of good degree distributions
- Correlation model selection

Questions/comments :elsa.dupraz@lss.supelec.fr

18/19

[AZG02]	A. Aaron, R. Zhang, and B. Girod. Wyner-Ziv coding of motion video. In Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, volume 1, pages 240–244, 2002.
[Csi82]	 Csiszar. Linear codes for sources and source networks: Error exponents, universal coding. IEEE Transactions on Information Theory, 28(4):585–592, 1982.
[DRK12]	E. Dupraz, A. Roumy, and M. Kieffer. Source coding with side information at the decoder: Models with uncertainty, performance Bounds, and practical coding schemes. In Proceedings of the International Symposium on Information Theory and its Applications 2012, pages 1-5, October 2012.
[EY05]	A.W. Eckford and W. Yu. Rateless Slepian-Wolf Codes. In Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, pages 1757 – 1761, 2005.
[JVW10]	S. Jalali, S. Verdú, and T. Weissman. A universal scheme for Wyner-Ziv coding of discrete sources. IEEE Transactions on Information Theory, 56(4):1737–1750, 2010.
[LXG02]	A. Liveris, Z. Xiong, and C. Georghiades. Compression of binary sources with side information at the decoder using LDPC codes. IEEE Communications Letters, 6:440-442, 2002.
[LXG03]	A.D. Liveris, Zixiang Xiong, and C.N. Georghiades. Distributed compression of binary sources using conventional parallel and serial concatenated convolutional codes. In Data Compression Conference, 2003. Proceedings. DCC 2003, pages 193 – 202, march 2003.
	· · · · · · · · · · · · · · · · · · ·

ontext	Source Definition	Coding scheme	Experimental results	Conclusions		
[MUM10]	T. Matsuta, T. Uyemat Universal Slepian-Wolf s In IEEE International Sp 2010.	su, and R. Matsumoto. source codes using Low-Dei imposium on Information 7	nsity Parity-Check matrices. Theory, Proceedings., pages 186	-190, june		
[Sga77]	A. Sgarro. Source coding with side information at several decoders. IEEE Transactions on Information Theory, 23(2):179–182, 1977.					
[SW73]	D. Slepian and J. Wolf. Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19(4):471–480, July 1973.					
[VAG06]	D. Varodayan, A. Aaron, and B. Girod. Rate-adaptive codes for distributed source coding. EURASIP Signal Processing, 86(11):3123-3130, 2006.					
[XLC04]	Z. Xiong, A.D. Liveris, Distributed source codir IEEE Signal Processing	and S. Cheng. ng for sensor networks. <i>Magazine</i> , 21(5):80-94, Se	p 2004.			

<ロ> < 部> < 書> < 書> < 書> と うへの 19/19